Biomechanical analysis of degenerative intervertebral disc enlargement of human spine

Author(s):  
Yu Hui ◽  
Ze-xun Zhou ◽  
Xue-qiang Ren ◽  
Jing Du ◽  
Jian-Bin Yang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Robert L. Wilson ◽  
Leah Bowen ◽  
Woong Kim ◽  
Luyao Cai ◽  
Stephanie Ellyse Schneider ◽  
...  

AbstractThe biomechanical function of the intervertebral disc (IVD) is a critical indicator of tissue health and pathology. The mechanical responses (displacements, strain) of the IVD to physiologic movement can be spatially complex and depend on tissue architecture, consisting of distinct compositional regions and integrity; however, IVD biomechanics are predominately uncharacterized in vivo. Here, we measured voxel-level displacement and strain patterns in adjacent IVDs in vivo by coupling magnetic resonance imaging (MRI) with cyclic motion of the cervical spine. Across adjacent disc segments, cervical flexion–extension of 10° resulted in first principal and maximum shear strains approaching 10%. Intratissue spatial analysis of the cervical IVDs, not possible with conventional techniques, revealed elevated maximum shear strains located in the posterior disc (nucleus pulposus) regions. IVD structure, based on relaxometric patterns of T2 and T1ρ images, did not correlate spatially with functional metrics of strain. Our approach enables a comprehensive IVD biomechanical analysis of voxel-level, intratissue strain patterns in adjacent discs in vivo, which are largely independent of MRI relaxometry. The spatial mapping of IVD biomechanics in vivo provides a functional assessment of adjacent IVDs in subjects, and provides foundational biomarkers for elastography, differentiation of disease state, and evaluation of treatment efficacy.


2015 ◽  
Vol 3 (1) ◽  
pp. 34-43 ◽  
Author(s):  
Dean K. Stolworthy ◽  
R. Amy Fullwood ◽  
Tyler M. Merrell ◽  
Laura C. Bridgewater ◽  
Anton E. Bowden

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mark Driscoll ◽  
Jean-Marc Mac-Thiong ◽  
Hubert Labelle ◽  
Stefan Parent

A large spectrum of medical devices exists; it aims to correct deformities associated with spinal disorders. The development of a detailed volumetric finite element model of the osteoligamentous spine would serve as a valuable tool to assess, compare, and optimize spinal devices. Thus the purpose of the study was to develop and initiate validation of a detailed osteoligamentous finite element model of the spine with simulated correction from spinal instrumentation. A finite element of the spine from T1 to L5 was developed using properties and geometry from the published literature and patient data. Spinal instrumentation, consisting of segmental translation of a scoliotic spine, was emulated. Postoperative patient and relevant published data of intervertebral disc stress, screw/vertebra pullout forces, and spinal profiles was used to evaluate the models validity. Intervertebral disc and vertebral reaction stresses respected publishedin vivo,ex vivo, andin silicovalues. Screw/vertebra reaction forces agreed with accepted pullout threshold values. Cobb angle measurements of spinal deformity following simulated surgical instrumentation corroborated with patient data. This computational biomechanical analysis validated a detailed volumetric spine model. Future studies seek to exploit the model to explore the performance of corrective spinal devices.


2019 ◽  
Vol 252 ◽  
pp. 07006 ◽  
Author(s):  
Robert Karpiński ◽  
Łukasz Jaworski ◽  
Józef Jonak ◽  
Przemysław Krakowski

The aim of this article was to present the results of a preliminary study on the stress distribution in the lumbar intervertebral disc [IVD] under loads induced during daily activities. Basic anatomy, biomechanical analysis of the vertebra and intervertebral disc were introduced. The third and fourth lumbar vertebrae were chosen for the study because they carry considerably higher loads, especially while standing or sitting. The static mechanical analyses using the finite element method (FEM) were conducted for four standard loads reflecting patient’s positions: recumbent, standing, sitting and standing with additional loads, and three models: an intervertebral disc with an inner nucleus pulposus and two prosthetic intervertebral discs, with or without an artificial nucleus. The FEM analysis was performed in the SolidWorks Simulation module on reverse-engineered 3D models of vertebrae and the intervertebral disc, based on a series of computed tomography [CT] scans of the patient’s spine, which had been properly processed in Materialise Mimics software and exported to CAD files. The model of the fourth intervertebral disc, placed between third and fourth vertebra, had been additionally modified to include its inner core, the nucleus pulposus.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhonghai Li ◽  
Hui Liu ◽  
Ming Yang ◽  
Wentao Zhang

Abstract Background The decision to treat multilevel cervical spondylotic myelopathy (MCSM) remains controversial. The purpose of this study is to compare the biomechanical characteristics of the intervertebral discs at the adjacent segments and internal fixation, and to provide scientific experimental evidence for surgical treatment of MCSM. Methods An intact C2-C7 cervical spine model was developed and validated. Four additional models were developed from the fusion model, including multilevel anterior cervical discectomy and fusion (mACDF), anterior cervical corpectomy and fusion (ACCF), hybrid decompression and fusion (HDF), and mACDF with cage alone (mACDF-CA). Biomechanical characteristics on the plate and the disc of adjacent levels (C2/3, C6/7) were comparatively analyzed. Results Of the four models, stress on the upper (C2/3) adjacent intervertebral disc was the lowest in the mACDF-CA group and highest in the ACCF group. Stress on the intervertebral discs at adjacent segments was higher for the upper C2/3 than the lower C6/7 intervertebral disc. In all models, the mACDF-CA group had the lowest stress on the intervertebral disc, while the ACCF group had the highest stress. In the three surgical models with titanium plate fixation (mACDF, ACCF, and HDF), the ACCF group had the highest stress at the titanium plate-screw interface, while the mACDF group had the lowest stress. Conclusion Among the four anterior cervical reconstructive techniques for MCSM, mACDF-CA makes little effect on the adjacent disc stress, which might reduce the incidence of adjacent segment degeneration (ASD) after fusion. However, the accompanying risk of the increased incidence of cage subsidence should never be neglected.


Author(s):  
James P. Price ◽  
Brian E. Rich ◽  
Christopher P. Cole ◽  
Richard R. Navarro

The motions and loads experienced by the human spine are complex and have been the subject of much study over the years. The emerging field of intervertebral disc arthroplasty offers products that must function within this complex loading environment over long periods of time. So called “first generation” intervertebral disc designs accomplish this through one or more articulating surfaces. Second generation artificial discs attempt to mimic the multi-axial disc motion and stiffness exhibited by the natural human disc. The eDisc not only provides this type of viscoelastic motion, but also provides the first capability to sense loads and motions to improve patient outcomes.


Author(s):  
Mária Minárová ◽  
Jozef Sumec ◽  
Mária Tješšová

Abstract The paper deals with the biomechanical investigation on the motion segment - basic part of the human lumbar spine focused on the intervertebral disc response to the various types of load. It contains the description and the reason of the simplification of the model, the biomechanical laws; the mathematical treatment with the computational implementation added. The results are presented and discussed especially for the intervertebral disc.


2015 ◽  
Vol 17 (1) ◽  
Author(s):  
William Mark Erwin ◽  
Leroi DeSouza ◽  
Martha Funabashi ◽  
Greg Kawchuk ◽  
Muhammad Zia Karim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document