scholarly journals Weighted gene co-expression network analysis and prognostic analysis identifies hub genes and the molecular mechanism related to head and neck squamous cell carcinoma

2019 ◽  
Vol 20 (6) ◽  
pp. 750-759 ◽  
Author(s):  
Qiuli Li ◽  
Weichao Chen ◽  
Ming Song ◽  
Wenkuan Chen ◽  
Zhongyuan Yang ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jili Cui ◽  
Lian Zheng ◽  
Yuanyuan Zhang ◽  
Miaomiao Xue

AbstractHead and neck squamous cell carcinoma (HNSCC) is the sixth most common type of malignancy in the world. DNA cytosine-5-methyltransferase 1 (DNMT1) play key roles in carcinogenesis and regulation of the immune micro-environment, but the gene expression and the role of DNMT1 in HNSCC is unknown. In this study, we utilized online tools and databases for pan-cancer and HNSCC analysis of DNMT1 expression and its association with clinical cancer characteristics. We also identified genes that positively and negatively correlated with DNMT1 expression and identified eight hub genes based on protein–protein interaction (PPI) network analysis. Enrichment analyses were performed to explore the biological functions related with of DNMT1. The Tumor Immune Estimation Resource (TIMER) database was performed to explore the relationship between DNMT1 expression and immune-cell infiltration. We demonstrated that DNMT1 gene expression was upregulated in HNSCC and associated with poor prognosis. Based on analysis of the eight hub genes, we determined that DNMT1 may be involved in cell cycle, proliferation and metabolic related pathways. We also found that significant difference of B cells infiltration based on TP 53 mutation. These findings suggest that DNMT1 related epigenetic alterations have close relationship with HNSCC progression, and DNMT1 could be a novel diagnostic biomarker and a promising therapeutic target for HNSCC.


2021 ◽  
Author(s):  
Mengmeng Wang ◽  
Bin Zhong ◽  
Man Li ◽  
Yanjuan Wang ◽  
Huaian Yang ◽  
...  

Head and neck squamous cell carcinoma (HNSCC) is the most common subtype of head and neck cancer; however, its pathogenesis and potential therapeutic targets remain largely unknown. In this study, we analyzed three gene expression profiles and screened differentially expressed genes (DEGs) between HNSCC and normal tissues. The DEGs were subjected to gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), protein–protein interaction (PPI), and survival analyses, while the connectivity map (CMap) database was used to predict candidate small molecules that may reverse the biological state of HNSCC. Finally, we measured the expression of the most relevant core gene in vitro and examined the effect of the top predicted potential drug against the proliferation of HNSCC cell lines. Among the 208 DEGs and ten hub genes identified, CDK1 and CDC45 were associated with unfavorable HNSCC prognosis, and three potential small molecule drugs for treating HNSCC were identified. Increased CDK1 expression was confirmed in HNSCC cells, and menadione, the top predicted potential drug, exerted significant inhibitory effects against HNSCC cell proliferation and markedly reversed CDK1 expression. Together, the findings of this study suggest that the ten hub genes and pathways identified may be closely related to HNSCC pathogenesis. In particular, CDK1 and CDC45 overexpression could be reliable biomarkers for predicting unfavorable prognosis in patients with HNSCC, while the new candidate small molecules identified by CMap analysis provide new avenues for the development of potential drugs to treat HNSCC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Guanying Feng ◽  
Feifei Xue ◽  
Yingzheng He ◽  
Tianxiao Wang ◽  
Hua Yuan

ObjectivesThis study aimed to identify genes regulating cancer stemness of head and neck squamous cell carcinoma (HNSCC) and evaluate the ability of these genes to predict clinical outcomes.Materials and MethodsThe stemness index (mRNAsi) was obtained using a one-class logistic regression machine learning algorithm based on sequencing data of HNSCC patients. Stemness-related genes were identified by weighted gene co-expression network analysis and least absolute shrinkage and selection operator analysis (LASSO). The coefficient of LASSO was applied to construct a diagnostic risk score model. The Cancer Genome Atlas database, the Gene Expression Omnibus database, Oncomine database and the Human Protein Atlas database were used to validate the expression of key genes. Interaction network analysis was performed using String database and DisNor database. The Connectivity Map database was used to screen potential compounds. The expressions of stemness-related genes were validated using quantitative real‐time polymerase chain reaction (qRT‐PCR).ResultsTTK, KIF14, KIF18A and DLGAP5 were identified. Stemness-related genes were upregulated in HNSCC samples. The risk score model had a significant predictive ability. CDK inhibitor was the top hit of potential compounds.ConclusionStemness-related gene expression profiles may be a potential biomarker for HNSCC.


Author(s):  
Yi Ding ◽  
Min Li ◽  
Tuersong Tayier ◽  
Long Chen ◽  
ShuMei Feng

Background: : Head and neck squamous cell carcinoma (HNSCC) is a common cancer that is characterized by a complex pathogenesis. Only limited data are available on the primary pathogenic genes and pathways in HNSCC. Objective: This study aimed to identify potential biomarkers of HNSCC and explore its underlying mechanisms. Methods: We screened differentially expressed genes (DEGs) using the Gene Expression Omnibus(GEO) database. Gene Ontology (GO) and Reactome pathway enrichment were analyzed using the STRING database. The protein-protein interaction network of the DEGs was reconstructed using Cytoscape software in STRING. The ONCOMINE and UNLCAN databases were used to identify the expression of hub genes. In addition, we employed UNLCAN to correlate tumor grade with key genes. Results: Finally, the effect of hub genes on overall survival (OS) was analyzed using the Kaplan-Meier method. In total, 22 DEGs were identified, These were related to the mitotic cell cycle, mitotic G1-G1, and S phases, G2/M transition, NOTCH signaling, and regulation of TP53 activity. Seven hub genes were screened with Cytoscape. Increased expression of five hub genes (AURKA, BIRC5, MKI67, UBE2C, and TOP2A) was related to a higher tumor grade and worse OS. Conclusion: We have identified five key genes that may help us understand the carcinogenic mechanisms related to the cell cycle in HNSCC. These genes may be used as biomarkers for survival and treatment of HNSCC.


2019 ◽  
Author(s):  
Jian Zhang ◽  
Huali Jiang ◽  
Tao Xie ◽  
Baiyao Wang ◽  
Xiaoting Huang ◽  
...  

Abstract Objective: Lymphovascular invasion (LOI), a key pathological feature of head and neck squamous cell carcinoma (HNSCC), predicts poor survival. However, the associated clinical characteristics remain uncertain, and the molecular mechanisms are largely unknown. Methods: Weighted gene co-expression network analysis was performed to construct gene co-expression networks and investigate the relationship between modules and LOI clinical trait. Functional enrichment and KEGG pathway enrichment analysis were performed for differentially expressed genesusing DAVID database. The protein-protein interaction network was constructed using Cytoscape software, and module analysis was performed using MCODE. Survival analysis and unsupervised hierarchical clustering were used to evaluate the relationships among LOI-associated genomic subtype, clinicopathological features and patient outcomes. And the potential targeted LOI molecular agents were identified with DrugBank. Results: 10 co-expression modules in two key modules (turquoise and pink) associated with tumor LOI were identified. Functional enrichment and KEGG analysis identified turquoise and pink modules played significant roles in the progression of HNSCC. The 24 genes in two modules were identified as hub genes. Clustering analysis with seven hub genes set further divided cases into subtypes 1 and 2, which were significantly associated with pathology-determined LOI status in both cohorts. The 10-year overall survival of subtype 2 was significantly worse than that of subtype 1. Conclusions: Our research revealed the key co-expression modules and identified seven prognostic biomarkers, including CCNA2, CNFN, DEPDC1, KIF18, KIF23, PRC1, TTK, which provide some new insights into LOI of HNSCC. Additionally, the small molecular agents may be a candidate drug for treating LOI.


Sign in / Sign up

Export Citation Format

Share Document