The Six Degrees of Freedom Motion of the Human Head, Spine, and Pelvis in a Frontal Impact

2013 ◽  
Vol 15 (3) ◽  
pp. 294-301 ◽  
Author(s):  
F. J. Lopez-Valdes ◽  
P. O. Riley ◽  
D. J. Lessley ◽  
K. B. Arbogast ◽  
T. Seacrist ◽  
...  
2009 ◽  
Vol 18 (08) ◽  
pp. 1425-1439 ◽  
Author(s):  
VITOANTONIO BEVILACQUA ◽  
FRANCESCO ANDRIANI ◽  
GIUSEPPE MASTRONARDI

In this paper, a software toolchain is presented for the fully automatic alignment of a 3D human face model. Beginning from a point cloud of a human head (previously segmented from its background), pose normalization is obtained using an innovative and purely geometrical approach. In order to solve the six degrees of freedom raised by this problem, we first exploit the human face's natural mirror symmetry; secondly, we analyze the frontal profile shape; and finally, we align the model's bounding box according to the position of the tip of the nose. The whole procedure is considered as a two-fold, multivariable optimization problem which is addressed by the use of multi-level, genetic algorithms and a greedy search stage, with the latter being compared against standard PCA. Experiments were conducted utilizing a GavabDB database and took into account proper preprocessing stages for noise filtering and head model reconstruction. Outcome results reveal strong validity in this approach, however, at the price of high computational complexity.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Anko Börner ◽  
Dirk Baumbach ◽  
Maximilian Buder ◽  
Andre Choinowski ◽  
Ines Ernst ◽  
...  

AbstractEgo localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one’s own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors – the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.


2020 ◽  
pp. 67-73
Author(s):  
N.D. YUsubov ◽  
G.M. Abbasova

The accuracy of two-tool machining on automatic lathes is analyzed. Full-factor models of distortions and scattering fields of the performed dimensions, taking into account the flexibility of the technological system on six degrees of freedom, i. e. angular displacements in the technological system, were used in the research. Possibilities of design and control of two-tool adjustment are considered. Keywords turning processing, cutting mode, two-tool setup, full-factor model, accuracy, angular displacement, control, calculation [email protected]


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2562
Author(s):  
Tomasz Dzitkowski ◽  
Andrzej Dymarek ◽  
Jerzy Margielewicz ◽  
Damian Gąska ◽  
Lukasz Orzech ◽  
...  

A method for selecting dynamic parameters and structures of drive systems using the synthesis algorithm is presented. The dynamic parameters of the system with six degrees of freedom, consisting of a power component (motor) and a two-speed gearbox, were determined, based on a formalized methodology. The required gearbox is to work in specific resonance zones, i.e., meet the required dynamic properties such as the required resonance frequencies. In the result of the tests, a series of parameters of the drive system, defining the required dynamic properties such as the resonance and anti-resonance frequencies were recorded. Mass moments of inertia of the wheels and elastic components, contained in the required structure of the driving system, were determined for the selected parameters obtained during the synthesis.


Sign in / Sign up

Export Citation Format

Share Document