On the design of three-dimensional mechanical metamaterials using load flow visualization

Author(s):  
Sree Kalyan Patiballa ◽  
Girish Krishnan
Author(s):  
Theodore J. Heindel ◽  
Terrence C. Jensen ◽  
Joseph N. Gray

There are several methods available to visualize fluid flows when one has optical access. However, when optical access is limited to near the boundaries or not available at all, alternative visualization methods are required. This paper will describe flow visualization using an X-ray system that is capable of digital X-ray radiography, digital X-ray stereography, and digital X-ray computed tomography (CT). The unique X-ray flow visualization facility will be briefly described, and then flow visualization of various systems will be shown. Radiographs provide a two-dimensional density map of a three dimensional process or object. Radiographic images of various multiphase flows will be presented. When two X-ray sources and detectors simultaneously acquire images of the same process or object from different orientations, stereographic imaging can be completed; this type of imaging will be demonstrated by trickling water through packed columns and by absorbing water in a porous medium. Finally, local time-averaged phase distributions can be determined from X-ray computed tomography (CT) imaging, and this will be shown by comparing CT images from two different gas-liquid sparged columns.


1984 ◽  
Vol 106 (4) ◽  
pp. 390-398 ◽  
Author(s):  
J. R. Koseff ◽  
R. L. Street

A synthesis of observations of flow in a three-dimensional lid-driven cavity is presented through the use of flow visualization pictures and velocity and heat flux measurements. The ratio of the cavity depth to width used was 1:1 and the span to width ratio was 3:1. Flow visualization was accomplished using the thymol blue technique and by rheoscopic liquid illuminated by laser-light sheets. Velocity measurements were made using a two-component laser-Doppler-anemometer and the heat flux on the lower boundary of the cavity was measured using flush mounted sensors. The flow is three-dimensional and is weaker at the symmetry plane than that predicted by accurate two-dimensional numerical simulations. Local three-dimensional features, such as corner vortices in the end-wall regions and longitudinal Taylor-Go¨rtler-like vortices, are significant influences on the flow. The flow is unsteady in the region of the downstream secondary eddy at higher Reynolds numbers (Re) and exhibits turbulent characteristics in this region at Re = 10,000.


2018 ◽  
Vol 844 ◽  
pp. 61-91 ◽  
Author(s):  
Weihua Li ◽  
Satish Kumar

The coating of discrete objects is an important but poorly understood step in the manufacturing of a broad variety of products. An important model problem is the flow of a thin liquid film on a rotating cylinder, where instabilities can arise and compromise coating uniformity. In this work, we use lubrication theory and flow visualization experiments to study the influence of surfactant on these flows. Two coupled evolution equations describing the variation of film thickness and concentration of insoluble surfactant as a function of time, the angular coordinate and the axial coordinate are solved numerically. The results show that surface-tension forces arising from both axial and angular variations in the angular curvature drive flows in the axial direction that tend to smooth out free-surface perturbations and lead to a stable speed window in which axial perturbations do not grow. The presence of surfactant leads to Marangoni stresses that can cause the stable speed window to disappear by driving flow that opposes the stabilizing flow. In addition, Marangoni stresses tend to reduce the spacing between droplets that form at low rotation rates, and reduce the growth rate of rings that form at high rotation rates. Flow visualization experiments yield observations that are qualitatively consistent with predictions from linear stability analysis and the simulation results. The visualizations also indicate that surfactants tend to suppress dripping, slow the development of free-surface perturbations, and reduce the shifting and merging of rings and droplets, allowing more time for solidifying coatings in practical applications.


2021 ◽  
Author(s):  
Shengli Mi ◽  
Hongyi Yao ◽  
Xiaoyu Zhao ◽  
Wei Sun

Abstract The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional materials. Companioned with the mechanism of structural or cellular materials1–5, the ancient wisdom of origami6–11 and kirigami12–16 and the involvement of multiphysics interaction2,17,18 enrich the programable mechanical behaviors of metamaterials, including shape-morphing8,12,14,16,19, compliance4,5,8,17,20, texture2,18,21, and topology11,18,22−25. However, typical design strategies are mainly convergent, which transfers various structures into one family of metamaterials that are relatively incompatible with the others and do not fully bring combinatorial principles3,10,26 into play. Here, we report a divergent strategy that designs a clan of mechanical metamaterials with diverse properties derived from a symmetric curve consisting of serpentines and arcs. We derived this composite curve into planar and cubic unit-cells and modularized them by attaching magnetics. Moreover, stacking each of them yields two- and three-dimensional auxetic metamaterials, respectively. Assembling with both modules, we achieved three thick plate-like metamaterials separately with flexibility, in-plane buckling, and foldability. Furthermore, we demonstrated that the hybrid of paradox properties is possible by combining two of the above assembles. We anticipate that this divergent strategy paves the path of building a hierarchical library of diverse combinable mechanical metamaterials and making conventional convergent strategies more efficient to various requests. Main


Author(s):  
Sree Kalyan Patiballa ◽  
Girish Krishnan

Abstract Deformable metamaterials are materials that are made up of several repeating elastic building blocks whose geometries can be tailored to obtain a specified global shape change or stiffness behavior. They are deemed useful in soft robotics, shape morphing mechanisms, stretchable electronics, wearable devices, and devices that adapt according to their environment. This paper presents a two-step sequential design framework for the synthesis of deformable mechanical metamaterials where (a) topology optimization is used to map global deformation requirement to local elasticity matrix, followed by (b) a selection of building block microstructure geometry from a database and refining it to match the elasticity requirement. The first step is accomplished through a unique parameterization scheme that enables the classification of the planar orthotropic elasticity matrix into four distinct classes. The second step uses a kinetostatic framework known as load flow visualization to populate candidate microstructure geometries within these four classes. Finally, the framework is validated for the design of a cantilever beam with a specified lateral stiffness requirement and the design of planar sheets that exhibit sinusoidal deformation patterns.


2020 ◽  
Vol 117 (44) ◽  
pp. 27204-27210 ◽  
Author(s):  
Yong Hu ◽  
Zipeng Guo ◽  
Andrew Ragonese ◽  
Taishan Zhu ◽  
Saurabh Khuje ◽  
...  

Molecular ferroelectrics combine electromechanical coupling and electric polarizabilities, offering immense promise in stimuli-dependent metamaterials. Despite such promise, current physical realizations of mechanical metamaterials remain hindered by the lack of rapid-prototyping ferroelectric metamaterial structures. Here, we present a continuous rapid printing strategy for the volumetric deposition of water-soluble molecular ferroelectric metamaterials with precise spatial control in virtually any three-dimensional (3D) geometry by means of an electric-field–assisted additive manufacturing. We demonstrate a scaffold-supported ferroelectric crystalline lattice that enables self-healing and a reprogrammable stiffness for dynamic tuning of mechanical metamaterials with a long lifetime and sustainability. A molecular ferroelectric architecture with resonant inclusions then exhibits adaptive mitigation of incident vibroacoustic dynamic loads via an electrically tunable subwavelength-frequency band gap. The findings shown here pave the way for the versatile additive manufacturing of molecular ferroelectric metamaterials.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3527 ◽  
Author(s):  
Janet Reinbold ◽  
Tobias Frenzel ◽  
Alexander Münchinger ◽  
Martin Wegener

On the occasion of this special issue, we start by briefly outlining some of the history and future perspectives of the field of 3D metamaterials in general and 3D mechanical metamaterials in particular. Next, in the spirit of a specific example, we present our original numerical as well as experimental results on the phenomenon of acoustical activity, the mechanical counterpart of optical activity. We consider a three-dimensional chiral cubic mechanical metamaterial architecture that is different from the one that we have investigated in recent early experiments. We find even larger linear-polarization rotation angles per metamaterial crystal lattice constant than previously and a slower decrease of the effects towards the bulk limit.


Sign in / Sign up

Export Citation Format

Share Document