Striga resistance and compatibility of maize genotypes to a biocontrol agent, Fusarium oxysporum f.sp.strigea

2020 ◽  
Vol 34 (4) ◽  
pp. 437-454 ◽  
Author(s):  
Admire I. T. Shayanowako ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Learnmore Mwadzingeni
Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1004
Author(s):  
John Lobulu ◽  
Hussein Shimelis ◽  
Mark D. Laing ◽  
Arnold Angelo Mushongi ◽  
Admire Isaac Tichafa Shayanowako

Striga species cause significant yield loss in maize varying from 20 to 100%. The aim of the present study was to screen and identify maize genotypes with partial resistance to S. hermonthica (Sh) and S. asiatica (Sa) and compatible with Fusarium oxysporum f. sp. strigae (FOS), a biocontrol agent. Fifty-six maize genotypes were evaluated for resistance to Sh and Sa, and FOS compatibility. Results showed that FOS treatment significantly (p < 0.001) enhanced Striga management compared to the untreated control under both Sh and Sa infestations. The mean grain yield was reduced by 19.13% in FOS-untreated genotypes compared with a loss of 13.94% in the same genotypes treated with FOS under Sh infestation. Likewise, under Sa infestation, FOS-treated genotypes had a mean grain yield reduction of 18% while untreated genotypes had a mean loss of 21.4% compared to the control treatment. Overall, based on Striga emergence count, Striga host damage rating, grain yield and FOS compatibility, under Sh and Sa infestations, 23 maize genotypes carrying farmer preferred traits were identified. The genotypes are useful genetic materials in the development of Striga-resistant cultivars in Tanzania and related agro-ecologies.


2020 ◽  
Vol 73 (2) ◽  
pp. 177-183
Author(s):  
A. Sajeena ◽  
Deepthi S. Nair ◽  
K. Sreepavan

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Janki N. Thakker ◽  
Samiksha Patel ◽  
Pinakin C. Dhandhukia

The aim of the present study was to scrutinize the response of banana (Grand Naine variety) plants when interacting with dead or live pathogen, Fusarium oxysporum f.sp. cubense, a causative agent of Panama disease. Response of plants was evaluated in terms of induction of defense-related marker enzyme activity, namely, peroxidase (POX), polyphenol oxidase (PPO), -1,3 glucanase, chitinase, and phenolics. Plant's interaction with live pathogen resulted in early induction of defense to restrain penetration as well as antimicrobial productions. However, pathogen overcame the defense of plant and caused disease. Interaction with dead pathogen resulted in escalating defense response in plants. Later on plants inoculated with dead pathogen showed resistance to even forced inoculation of live pathogen. Results obtained in the present study suggest that dead pathogen was able to mount defense response in plants and provide resistance to Panama disease upon subsequent exposure. Therefore, preparation from dead pathogen could be a potential candidate as a biocontrol agent or plant vaccine to combat Panama disease.


2010 ◽  
Vol 29 (12) ◽  
pp. 1452-1459 ◽  
Author(s):  
Rojan P. John ◽  
R.D. Tyagi ◽  
D. Prévost ◽  
Satinder K. Brar ◽  
Stéphan Pouleur ◽  
...  

2019 ◽  
Vol 10 (3) ◽  
pp. 393-402
Author(s):  
Jefferson Guato-Molina ◽  
Javier Auhing-Arcos ◽  
Jorge Crespo-Ávila ◽  
Gabriel Esmeraldas-García ◽  
Antonio Mendoza-León ◽  
...  

2018 ◽  
Vol 10 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Fatima NOUAYTI ◽  
Ilham MADANI ◽  
Abdessalem TAHIRI ◽  
Abdelali BLENZAR ◽  
Rachid LAHLALI

Rhizomania is one of the most devastating diseases of sugar beet worldwide. The disease poses a serious threat to Moroccan production and it is capable of significantly decreasing quality and yield of sugar beet plantations. The long-term survival of its fungal vector (Polymyxa betae) in soil makes it a very difficult disease to manage. Therefore, this study investigated the potential of a non-pathogenic fungal Fusarium oxysporum strain Fo47 to control Polymyxa betae. This biocontrol agent was applied as soil treatment, seed treatment, or a combination of the both treatments. A bio-test was performed on treated soil. After four weeks of culture, the roots of sugar beet seedlings were retrieved and analyzed by the DAS-ELISA test. Results indicated that F. oxysporium Fo47 reduced the activity and survival of P. betae when compared to a reference biocontrol agent Trichoderma harzianum, which only revealed significant in reducing the viral load of Beet Necrotic Yellow Vein Virus (BNYVV) as seed treatment. The non-pathogenic Fusarium oxysporum Fo47 was more effective as soil treatment and allowed almost the same reduction of BNYVV virus concentration as T. harzianum 908. Therefore, our findings emphasizes that the performance of the biocontrol agent depends on the method of application.


2017 ◽  
Vol 53 (No. 2) ◽  
pp. 85-95 ◽  
Author(s):  
Thongkamngam Titi ◽  
Jaenaksorn Tanimnun

Efficacy of non-pathogenic Fusarium oxysporum (F221-B) was assessed as a possible biocontrol agent against fungal pathogens, namely Curvularia lunata (C11, C12), F. semitectum (F113), F. oxysporum f.sp. lactucae (F221-R, F442-G), Rhizoctonia solani (R11, R12), Rhizoctonia sp. (R111, R112, R113) in vitro, while F221-B showed a moderate ability to inhibit the mycelial growth of tested fungi about 36–56%. Then, F221-B was further evaluated for its ability of controlling lettuce root rot and wilt caused by F442-G in hydroponics. It was revealed that F221-B reduced disease incidence and severity about 60–80% compared to the inoculated control and significantly promoted the growth of 3 lettuce varieties. Interestingly, using only F221-B gave the significantly highest fresh weight (twice over the healthy control). Conclusively, this study provides an important suggestion for further development of F221-B since it showed the ability of biocontrol agent and plant growth promoting fungus.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 891
Author(s):  
Mila Santos ◽  
Fernando Diánez ◽  
Alejandro Moreno-Gavíra ◽  
Brenda Sánchez-Montesinos ◽  
Francisco J. Gea

A study was conducted to explore the efficacy of potential biocontrol agent Cladobotryum mycophilum against different phytopathogenic fungi. The growth rates of 24 isolates of C. mycophilum were determined, and their antagonistic activity was analysed in vitro and in vivo against Botrytis cinerea, Fusarium oxysporum f. sp. radicis-lycopersici, Fusarium oxysporum f.sp. cucumerinum, Fusarium solani, Phytophthora parasitica, Phytophthora capsici, Pythium aphanidermatum and Mycosphaerella melonis. Most isolates grow rapidly, reaching the opposite end of the Petri dish within 72–96 h. Under dual-culture assays, C. mycophilum showed antagonistic activity in vitro against all phytopathogenic fungi tested, with mycelial growth inhibition ranging from 30 to 90% against all the different phytopathogens tested. Similarly, of all the selected isolates, CL60A, CL17A and CL18A significantly (p < 0.05) reduced the disease incidence and severity in the plant assays compared to the controls for the different pathosystems studied. Based on these results, we conclude that C. mycophilum can be considered as a potential biological control agent in agriculture. This is the first study of Cladobotryum mycophilum as a biological control agent for different diseases caused by highly relevant phytopathogens in horticulture.


Sign in / Sign up

Export Citation Format

Share Document