Effect of Pique and Honeycomb Structures on Moisture Management Properties of Eri Silk Knitted Fabrics

2019 ◽  
Vol 17 (8) ◽  
pp. 1130-1139 ◽  
Author(s):  
B. Senthil Kumar ◽  
M. Ramesh Kumar ◽  
M. Parthiban ◽  
T. Ramachandran
2021 ◽  
pp. 004051752098497
Author(s):  
Ning Mao ◽  
Xiaohong Qin ◽  
Liming Wang ◽  
Jianyong Yu

Wet comfort is a critical performance for fabrics, especially when human bodies release sweat in daily life. Despite excellent moisture absorption performance, cotton yarns are still limited in the moisture release/transfer ability. Here, based on a novel electrospinning technology, polyacrylonitrile and polystyrene (PS) electrospun nanofiber/cotton composite yarns were produced, respectively. Under fluorescence microscopic observation, electrospun fibers within the composite yarns showed a uniform distribution. As a result, these composite yarn-based knitted fabrics obtained a good water transport ability and a fast water evaporation rate. According to the moisture management test, PS electrospun nanofiber composite yarn-based fabrics exhibited a relatively high one-way transport index R (400%), claiming an enhanced moisture management performance. Finally, specific surface area tests and finite element analyses were used to analyze the water transport mechanism inside the yarns. The results proved that a small number of electrospun fibers played a predominant role in enhancing the moisture management ability of the composite yarns.


2021 ◽  
Vol 58 (2) ◽  
pp. 97-105
Author(s):  
Nilüfer Yıldız Varan ◽  
Yavuz Çaydamlı

Abstract This study investigates the effect of washing fabrics (nylon 6.6 powernet knitted fabrics with 30% spandex) treated with chitosan on their moisture management and air permeability. The knitted fabrics were treated with three different solutions of chitosan and dimethylol dihydroxyethylene urea (DMDHEU); in addition to chitosan and DMDHEU, one solution contained the complexing agent ethylenediaminetetraacetic acid (EDTA) and the other contained the nonionic surfactant and penetration agent octylphenol ethoxylate. The three solutions were compared in terms of their effect on moisture management and air permeability properties. Nylon fabrics treated and washed with these solutions were characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Nylon fabrics treated with chitosan and DMDHEU showed the potential to transfer liquid moisture to the lower layer and keep the layer next to the skin dry after 20 washes.


2017 ◽  
Vol 48 (4) ◽  
pp. 738-760 ◽  
Author(s):  
T Suganthi ◽  
P Senthilkumar

Thermo-physiological comfort of the fabric is attained through the ability of managing heat and transmission of sensible and insensible perspiration. An investigation on influence of tri-layer knitted structure on thermal comfort characteristics of layered knitted fabrics was carried out. Three tri-layer knitted structures were developed in which inner layer was made up of micro-fibre polyester and outer layer was made up of modal yarn. The yarn used in the middle layer was changed to either micro-fibre polyester or polyester or acrylic yarn. The thermal comfort characteristics such as thermal conductivity, air permeability, water vapour permeability, wicking, moisture absorbency, drying rate and moisture management properties have been analysed. Wear trial was conducted for shuttle badminton players and they were ranked using thermal environment subjective judgement scale. Tri-layer knitted structure with micro-fibre polyester in the inner and middle layer and modal in the outer layer showed better thermal comfort characteristics both by objective evaluation and wear trial method compared to polyester or acrylic in the middle layer and is preferable for shuttle badminton sportswear.


2011 ◽  
Vol 42 (6) ◽  
pp. 792-800 ◽  
Author(s):  
Gauthier Bedek ◽  
Fabien Salaün ◽  
Zuzana Martinkovska ◽  
Eric Devaux ◽  
Daniel Dupont

2016 ◽  
Vol 88 (3) ◽  
pp. 275-292 ◽  
Author(s):  
Jefferson M Souza ◽  
Sandra Sampaio ◽  
Welter C Silva ◽  
Sidney G de Lima ◽  
Andrea Zille ◽  
...  

Eight functional single jersey plain knitted fabrics have been developed in order to assess a quantitative analysis of various comfort-related properties in terms of thermal control, air and water vapor permeability, wickability, coefficient of kinetic friction and antimicrobial efficiency, using eight different commercially available functional yarns: Polyester Craque® and viscose Craque® conventional yarns as controls; Finecool® and Coolmax® polyester yarns for moisture management and quick drying; Holofiber® polyester yarns containing an optical responsive material that the producer claims to improve body oxygenation; Airclo® polyester hollow yarns for efficient control of body temperature; and, finally, polyester Trevira® and viscose Seacell® for antimicrobial activity. According to the results, Coolmax® for moisture management, Airclo® for thermal control and Seacell® for antimicrobial activity present the best performances as technical textiles for sportswear for the respective specific functional property.


2014 ◽  
Vol 14 (3) ◽  
pp. 174-178 ◽  
Author(s):  
Viera Glombikova ◽  
Petra Komarkova

Abstract This study evaluates the efficiency of non-flammable functional underwear used as a secondary heat barrier in extreme conditions. Five groups of knitted fabrics were analysed for flame resistance and selected physiological properties (water vapour permeability, air permeability, thermal resistance and liquid moisture transport by moisture management transport). The results indicated similar levels of flame resistance for the materials tested but show important differences in terms of physiological characteristics, namely liquid moisture transport, which influences the safety and comfort of protective clothing.


2011 ◽  
Vol 42 (1) ◽  
pp. 19-33 ◽  
Author(s):  
MB Sampath ◽  
Anton Aruputharaj ◽  
Mani Senthilkumar ◽  
G Nalankilli

2016 ◽  
Vol 45 (3) ◽  
pp. 199-205 ◽  
Author(s):  
Z.A. Raza ◽  
F. Anwar ◽  
N. Ahmad ◽  
A. Rehman ◽  
N. Nasir

Purpose The paper aims to improve the protective and comfort properties of both woven and knitted acrylic fabrics by applying a hybrid waterborne polyurethane/fluorocarbon hydrophobic finish. Design/methodology/approach In this study, it was found that the transportation of water from fabrics is one of the important textile parameters. To improve this property, a polyurethane-based finish (Dicrylan BSRN®) and an oil- and water-repellent finish (Oleophobol ZSR®) were applied by using the pad-dry-cure method. After applying the finishes, the resultant fabric samples were investigated for various textile properties. Findings The application of Oleophobol ZSR® increased the absorbency time, indicating that the fabric became hydrophobic, whereas the application of Dicrylan BSRN® finish improved the moisture management properties of the woven acrylic. The tensile strength of the woven acrylic fabric was not significantly affected by the application of these finishes. The contact angle of treated knitted fabrics increased and air permeability decreased with an increase in the concentration of Oleophobol ZSR®. Practical implications Moisture management is one of the crucial performance criteria in today’s apparel industry. Therefore, fluorochemicals are one of the major precursors used in water-repellent finishes and waterproof membranes in outdoor garments. Based on this fact, this research work focused on the textile sector, where moisture management is required. Originality/value This is the first report about the combined application of waterborne polyurethane and fluorochemical-based finishes on acrylic fabrics to tune their comfort and hydrophobic properties.


2018 ◽  
Vol 26 (5(131)) ◽  
pp. 47-53 ◽  
Author(s):  
Balakrshnan Senthil Kumar ◽  
Thangavelu Ramachandran

Eri silk, a wild silk variety available in the northeastern states of India, has better softness, tensile and thermal properties. The present study aimed to develop different knitted structures and investigate the influence of knitting process variables on the thermal comfort and wicking properties. Knitted single jersey and single pique fabric structures were produced with two sets of yarns – 25 tex and 14.32 tex with three levels of loop length. Thermal properties of the fabric were analysed using an Alambeta instrument, and the wicking ability was measured with an vertical wicking tester. Thermal comfort properties of eri silk were also compared with those of conventional mulberry silk, with the experiment result revealing that eri silk has better comfort values. A statistically significant correlation is found between knitting process parameters viz. the yarn count, loop length knitting structure and the thermal and wickability values of the fabrics.


Sign in / Sign up

Export Citation Format

Share Document