Mechanical Properties Evaluation of Sugarcane Bagasse-Glass/ Polyester Composites

2019 ◽  
pp. 1-18 ◽  
Author(s):  
Marwa A. Abd El-Baky ◽  
Mona Megahed ◽  
Hend H. El-Saqqa ◽  
Amal E. Alshorbagy
Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2016 ◽  
Vol 136 ◽  
pp. 1-10 ◽  
Author(s):  
M. Haameem J.A. ◽  
M.S. Abdul Majid ◽  
M. Afendi ◽  
H.F.A. Marzuki ◽  
I. Fahmi ◽  
...  

2021 ◽  
Vol 62 (1/2/3) ◽  
pp. 96
Author(s):  
A. Pattanaik ◽  
G. Sreenivasulu ◽  
P.S. Raghvendra Rao ◽  
N.A. Vinod ◽  
M. Veeranna ◽  
...  

2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


CERNE ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 153-160
Author(s):  
Stefania Lima Oliveira ◽  
Ticyane Pereira Freire ◽  
Tamires Galvão Tavares Pereira ◽  
Lourival Marin Mendes ◽  
Rafael Farinassi Mendes

ABSTRACT The objective of this study is to assess the effect of the laminar inclusion on the physical and mechanical properties of sugarcane bagasse particleboard. We used the commercial panels of sugarcane bagasse produced in China. To evaluate the effect of the laminar inclusion was tested two wood species (Pinus and Eucalyptus) and two pressures (10 and 15 kgf.cm-2) along with a control (without laminar inclusion). The panels with laminar inclusion obtained improvements in the physical properties, with a significant reduction in the WA2h, WA24h and TS2h. There was a significant increase in the properties MOE and MOR parallel and Janka hardness, while the properties MOE and MOR perpendicular decreased significantly. The pinus and eucalyptus veneers inclusion resulted in similar results when added to the panel with a 10 kgf.cm-2 pressure. The use of 15 kgf.cm-2 pressure is not indicated for the pinus veneer inclusion in sugar cane bagasse panels. There was no effect of the pressure level when evaluating the eucalyptus veneer inclusion on the properties of the sugarcane bagasse panels.


Sign in / Sign up

Export Citation Format

Share Document