scholarly journals Node Security in Hierarchical Sensor Networks: Distribution of Functions versus Keys

2009 ◽  
Vol 5 (5) ◽  
pp. 531-556
Author(s):  
Biswajit Panja ◽  
Sanjay Madria

Secure communication involving cluster heads in a sensor network is vital as they are responsible for data aggregation and for taking important decisions in their groups. In this article, we propose a scheme for secure communication via such nodes in a sensor network. In our approach, the base station provides a function to the cluster head of each group, which is used to compute the key for the secure communication with the base station. The protocol is first elucidated for a fixed cluster head in each group and later it is extended for dynamic cluster heads. Each function is computed using a certain number of points on the curve using Lagrange's interpolation [ 10 ]. The curve computed from the function intersects the Y axis at a point which is considered as the key of the cluster head. The advantage of this approach in providing secure communication out of a cluster head is that an adversary will not be able to get hold of the function by attacking the cluster head alone. This is because instead of storing the function in the cluster head, sub-functions are generated and distributed among the sensor nodes in each group. After the distribution of the sub-functions, these functions are discarded from each cluster head. When a cluster head wants to communicate with the base station it accumulates sub-functions to compute the function to compute the key used to encrypt/decrypt messages sent and received to and from the base station. For updating the functions, the sub-functions are updated using the information provided by the base station. The key distribution approach requires that the function is to be kept secret all the time. However, since it is present in the cluster head to compute the key, it is difficult to ensure its security. We have experimentally evaluated our scheme through the simulations using TinyOs and TOSSIM and the results show that latency can be improved by using the sub-functions updating approach rather than re-generating the functions and the sub-functions. Also, updating the sub-functions requires reduced computation and bandwidth requirements than updating the sub-keys because updating of the keys needs to be done from scratch whereas updating of the sub-functions are done using an updating parameter.

Author(s):  
Bahae ABIDI ◽  
Abdelillah JILBAB ◽  
Mohamed EL HAZITI

Even in difficult places to reach, the new networking technique allows the easy deployment of sensor networks, although these wireless sensor networks confront a lot of constraints. The major constraint is related to the quality of information sent by the network. The wireless sensor networks use different methods to achieve data to the base station. Data aggregation is an important one, used by these wireless sensor networks. But this aggregated data can be subject to several types of attacks and provides security is necessary to resist against malicious attacks, secure communication between severely resource constrained sensor nodes while maintaining the flexibility of the topology changes. Recently, several secure data aggregation schemes have been proposed for wireless sensor networks, it provides better security compared with traditional aggregation. In this paper, we try to focus on giving a brief statement of the various approaches used for the purpose of secure data aggregation in wireless sensor networks.


2021 ◽  
Author(s):  
Ved Prakash ◽  
Suman Pandey ◽  
deepti singh

Abstract Clustering plays a vital role in extending the lifespan and optimized direction of a wireless sensor network by integrating sensor nodes through clusters and choosing cluster heads (CHs) and non-cluster heads (NCHs). Cluster head aggregated data and non-cluster heads forward to the base station (BS). In this paper, we have introduced a new Dynamic Multipath Routing Protocol (DMPRP) for selections of cluster heads (CHs) and non-cluster heads (NCHs), which is ideally selected using M-PSO algorithm. After calculating the probabilities, the best selection of cluster heads has taken, and results have used to find the optimized shortest path using the Genetic Algorithm (GA). The GA algorithm uses an objective function consisting of a network to determine the optimal path.


21st century is considered as the era of communication, and Wireless Sensor Networks (WSN) have assumed an extremely essential job in the correspondence period. A wireless sensor network is defined as a homogeneous or heterogeneous system contains a large number of sensors, namely called nodes used to monitor different environments in cooperatives. WSN is composed of sensor nodes (S.N.), base stations (B.S.), and cluster head (C.H.). The popularity of wireless sensor networks has been increased day by day exponentially because of its wide scope of utilizations. The applications of wireless sensor networks are air traffic control, healthcare systems, home services, military services, industrial & building automation, network communications, VAN, etc. Thus the wide range of applications attracts attackers. To secure from different types of attacks, mainly intruder, intrusion detection based on dynamic state context and hierarchical trust in WSNs (IDSHT) is proposed. The trust evaluation is carried out in hierarchical way. The trust of sensor nodes is evaluated by cluster head (C.H.), whereas the trust of the cluster head is evaluated by a neighbor cluster head or base station. Hence the content trust, honest trust, and interactive trust are put forward by combining direct evaluation and feedback based evaluation in the fixed hop range. In this way, the complexity of trust management is carried in a hierarchical manner, and trust evaluation overhead is minimized.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Author(s):  
Gaurav Kumar Nigam ◽  
Chetna Dabas

Background & Objective: Wireless sensor networks are made up of huge amount of less powered small sensor nodes that can audit the surroundings, collect meaningful data, and send it base station. Various energy management plans that pursue to lengthen the endurance of overall network has been proposed over the years, but energy conservation remains the major challenge as the sensor nodes have finite battery and low computational capabilities. Cluster based routing is the most fitting system to help for burden adjusting, adaptation to internal failure, and solid correspondence to draw out execution parameters of wireless sensor network. Low energy adaptive clustering hierarchy is an efficient clustering based hierarchical protocol that is used to enhance the lifetime of sensor nodes in wireless sensor network. It has some basic flaws that need to be overwhelmed in order to reduce the energy utilization and inflating the nodes lifetime. Methods : In this paper, an effective auxiliary cluster head selection is used to propose a new enhanced GC-LEACH algorithm in order to minimize the energy utilization and prolonged the lifespan of wireless sensor network. Results & Conclusion: Simulation is performed in NS-2 and the outcomes show that the GC-LEACH outperforms conventional LEACH and its existing versions in the context of frequent cluster head rotation in various rounds, number of data packets collected at base station, as well as reduces the energy consumption 14% - 19% and prolongs the system lifetime 8% - 15%.


Author(s):  
Md. Habibur Rahman ◽  
Md. Ibrahim Abdullah

The nodes within a cluster of Wireless Sensor Network deployed in adverse areas face the security threats of eavesdropping and capturing. The fundamental issue in wireless sensor network security is to initialize secure communication between sensor nodes by setting up secret keys between communicating nodes. Because of limited hardware capacity, conventional network cryptography is infeasible for sensor network. In this paper a key management technique is proposed for clustered sensor network that uses some cryptographic operation to generate secret keys. This key is updated in response to the message of cluster head or base station. The key update instructions are stored in each sensor nodes before deployed in sensor field. The updated secret key is used to communicate between nodes and cluster head.


2012 ◽  
Vol 433-440 ◽  
pp. 5228-5232
Author(s):  
Mohammad Ahmadi ◽  
Hamid Faraji ◽  
Hossien Zohrevand

A sensor network has many sensor nodes with limited energy. One of the important issues in these networks is the increase of the life time of the network. In this article, a clustering algorithm is introduced for wireless sensor networks that considering the parameters of distance and remaining energy of each node in the process of cluster head selection. The introduced algorithm is able to reduce the amount of consumed energy in the network. In this algorithm, the nodes that have more energy and less distance from the base station more probably will become cluster heads. Also, we use algorithm for finding the shortest path between cluster heads and base station. The results of simulation with the help of Matlab software show that the proposed algorithm increase the life time of the network compared with LEACH algorithm.


2018 ◽  
Vol 32 (25) ◽  
pp. 1850297 ◽  
Author(s):  
Upasna Joshi ◽  
Rajiv Sharma

In wireless sensor network (WSN), most of the devices function on batteries. These nodes or devices have inadequate amount of initial energy which are consumed at diverse rates, based on the power level and intended receiver. In sleep scheduling algorithms, most of the sensor nodes are turned to sleep state to preserve energy and improve the network lifetime (NL). In this paper, an energy-efficient dynamic cluster-based protocol is proposed for WSN especially for physics-based applications. Initially, the network is divided into small clusters using adaptive clustering. The clusters are managed by the cluster heads. The cluster heads are elected based on the novel dynamic threshold. Afterwards, general variable neighborhood search is used to obtain the energy-efficient paths for inter-cluster data aggregation which is used to communicate with the sink. The performance of the proposed method is compared with competitive energy-efficient routing protocols in terms of various factors such as stable period, NL, packets sent to base station and packets sent to cluster head. Extensive experiments prove that the proposed protocol provides higher NL than the existing protocols.


2019 ◽  
Vol 8 (4) ◽  
pp. 7876-7881

Wireless sensor network explosive growth has increased demand for radio spectrum and has created problems with spectrum shortage since different wireless services and technologies have already been assigned the full range of wireless sensor networks. Cognitive radio has become a promising solution for resource-controlled wireless sensor network to access the reserved under-used frequency bands resourcefully. Artificial intelligence algorithms allow sensor nodes to avoid crowded congested bands by detecting under utilized licensed bands and to decide to adapt their transmission parameters. However, clusters are based on fixed spectrum distribution and cannot deal with the dynamic spectrum allocation required for future generation networks. Clusters are used to reduce power usage and support scalability of sensor networks. This article proposes an Hybridized Fuzzy Clustering (HFC), which groups adjacent nodes with comparable sets of idle channels and optimally forming power-efficient clusters based on three fuzzy energy parameters, proximity to the base station, and the level of the node to determine the possibility of each node being a cluster head.


Author(s):  
Yakubu Abdul-Wahab Nawusu ◽  
Alhassan Abdul-Barik ◽  
Salifu Abdul-Mumin

Extending the lifetime of a wireless sensor network is vital in ensuring continuous monitoring functions in a target environment. Many techniques have appeared that seek to achieve such prolonged sensing gains. Clustering and improved selection of cluster heads play essential roles in the performance of sensor network functions. Cluster head in a hierarchical arrangement is responsible for transmitting aggregated data from member nodes to a base station for further user-specific data processing and analysis. Minimising the quick dissipation of cluster heads energy requires a careful choice of network factors when selecting a cluster head to prolong the lifetime of a wireless sensor network. In this work, we propose a multi-criteria cluster head selection technique to extend the sensing lifetime of a heterogeneous wireless sensor network. The proposed protocol incorporates residual energy, distance, and node density in selecting a cluster head. Each factor is assigned a weight using the Rank Order Centroid based on its relative importance. Several simulation tests using MATLAB 7.5.0 (R2007b) reveal improved network lifetime and other network performance indicators, including stability and throughput, compared with popular protocols such as LEACH and the SEP. The proposed scheme will be beneficial in applications requiring reliable and stable data sensing and transmission functions.


Sign in / Sign up

Export Citation Format

Share Document