scholarly journals Assessment of stirrups in resisting punching shear in reinforced concrete flat slab

HBRC Journal ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 61-76
Author(s):  
Ahmed Raafat ◽  
Ahmed Fawzi ◽  
Hala Metawei ◽  
Hany Abdalla
2019 ◽  
Vol 54 (5) ◽  
Author(s):  
Haider K. Ammash ◽  
Safa S. Kadhim

In the present study, the effect of using reinforced concrete column capital on the punching shear strength of flat slab was investigated. The study was divided into two lines, the first line was the experimental study involves the molding four reinforced concrete flat slab models with dimensions (1600×1600×100 mm) with three different dimensions of column capital (400×400 mm, 600×600 mm, and 800×800 mm) in addition to reference model without columns capital (column dimension 200×200 mm). The second line that numerical modeling through the ABAQUS finite element program was introduced. Effect of column’s capital size and shape of column’s capital (rectangular and circular) were studied experimentally and numerically. A good agreement was obtained between the experimental and theoretical study. The main conclusion that the punching shear strength of reinforced concrete flat slab was affected on the size and shape of a column capital.


2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


Author(s):  
Hamid Abdulmahdi Faris ◽  
Lubna Mohammed Abd

The "flat slab" is a reinforced concrete slab bolstered, by a number of columns. Punching, shear is a category for collapse for reinforced concrete slabs exposed to great confined forces. In "flat slab" constructions the shear failure happens, at column bolster joints. To avoid this, collapse two methods are used, first method is increasing the column dimensions and, the other is to use drop panel if the first method leads to uneconomical, design. Two examples are used to find the effect, of column dimensions, increase on the punching shear failure of "flat slab". The first example, is a "flat slab" of span (5 by 5) m and the other is of span (6 by 6) m. The column which examined is the interior, edge and corner columns, and the interior column is the most dangerous case. It is concluded that, the increase of column dimensions are lead to avoid of punching shear failure in "flat slab" and the drop panel is enlarge the area of the critical shear perimeter and this avoiding punching shear failure.


2018 ◽  
Vol 7 (2.20) ◽  
pp. 321
Author(s):  
N Girish ◽  
N Lingeshwaran

Punching shear failure is a brittle failure and it is one of the most important types of failure to be considered while designing a reinforced concrete flat slab. This paper aims to study the performance of reinforced concrete flat slabs equipped with different punching shear reinforcement parameters. Three flat slab specimens were cast where two specimens contain punching shear reinforcement in the form of shear stirrups and structural shearbands. The test specimens have length and width of 1000mm and thickness of 185mm for the slabs. The slabs are connected to a column at the center with length and breadth of 300mm and a depth of 700mm. The test specimens were supported by steel plates with length and breadth of 150mm and a thickness of 25mm at the four corners of the slab. The test specimens are loaded on the column face at the top. The deflection, strain and crack pattern were observed and recorded.   


Author(s):  
Holly Smith ◽  
Tim Stratford ◽  
Luke Bisby

Flat slab-column punching shear specimens were tested under combined load and fire exposure, with varying edge restraint conditions. The slabs deflected away from the heat source (in the direction of loading) at all stages of the tests. This paper examines this unusual deflection behaviour, although no definitive reason for this unexpected behaviour has been found.


2014 ◽  
Vol 7 (3) ◽  
pp. 414-467 ◽  
Author(s):  
D. C. Oliveira ◽  
R. B. Gomes ◽  
G. S. Melo

The structural behavior and the ultimate punching shear resistance of internal reinforced concrete flat slab-column connections, with one hole adjacent to the column, with or without flexural moment transfer of the slab to the column was investigated. Main variables were: the existence whether or not hole, flexural reinforcement layout and ratio, the direction and sense of the moment transferred and the eccentricity of the load (M (moment transferred to column) / V (shear)) ratio at the connection - 0,50 m or 0,25 m. Seven internal slab-column joining were tested and ultimate loads, cracking, deflections, concrete and reinforcement strains were analyzed. The existence of hole adjacent to the smaller column dimension, the hole dimension, flexural reinforcement rate and placing, the variation of relation Mu/Vu in function of the load, and, than, of eccentricity of the load, influenced the slabs behavior and rupture load. Test results were compared with the estimations from CEB-FIP/MC1990 [7], EC2/2004 [12], ACI-318:2011 [1] and NBR 6118:2007 [5]. ACI [1] and EC2 [12] presented most conservative estimates, although have presented some non conservative estimates. Brazilian NBR [5], even though being partly based in EC2 [12], presented smaller conservative estimates and more non conservative estimates. A modification on all codes is proposed for taking in account the moment caused by the eccentricity at the critical perimeter for slabs with holes.


Sign in / Sign up

Export Citation Format

Share Document