scholarly journals Alterations in Mesenteric Lymph Node T Cell Phenotype and Cytokine Secretion are Associated with Changes in Thymocyte Phenotype after LP-BM5 Retrovirus Infection

2005 ◽  
Vol 12 (4) ◽  
pp. 249-257 ◽  
Author(s):  
Maria C. Lopez ◽  
Ronald R. Watson

In this study, mouse MLN cells and thymocytes from advanced stages of LP-BM5 retrovirus infection were studied. A decrease in the percentage of IL-7+cells and an increase in the percentage of IL-16+cells in the MLN indicated that secretion of these cytokines was also altered after LP-BM5 infection. The percentage of MLN T cells expressing IL-7 receptors was significantly reduced, while the percentage of MLN T cells expressing TNFR-p75 and of B cells expressing TNFR-p55 increased. Simultaneous analysis of surface markers and cytokine secretion was done in an attempt to understand whether the deregulation of IFN-Υ secretion could be ascribed to a defined cell phenotype, concluding that all T cell subsets studied increased IFN-Υ secretion after retrovirus infection. Finally, thymocyte phenotype was further analyzed trying to correlate changes in thymocyte phenotype with MLN cell phenotype. The results indicated that the increase in single positive either CD4+CD8-or CD4-CD8+cells was due to accumulation of both immature (CD3-) and mature (CD3+) single positive thymocytes. Moreover, single positive mature thymocytes presented a phenotype similar to the phenotype previously seen on MLN T cells. In summary, we can conclude that LP-BM5 uses the immune system to reach the thymus where it interferes with the generation of functionally mature T cells, favoring the development of T cells with an abnormal phenotype. These new T cells are activated to secrete several cytokines that in turn will favor retrovirus replication and inhibit any attempt of the immune system to control infection.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. The importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented in mice. Recently, some groups have investigated the survival of effector/memory T cells in the human BM. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown.Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV- and CMV+ groups.Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8+ T cells was reduced. In addition, the frequency of B cells and CD4+ T cells positively correlated with BMI in the BM of CMV- persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons.Conclusion. Our work suggests that, in addition to aging and CMV, obesity may represent an additional risk factor for immunosenescence in adaptive immune cells. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


2020 ◽  
Author(s):  
Benjamin G. Wiggins ◽  
Laura J. Pallett ◽  
Xiaoyan Li ◽  
Scott P. Davies ◽  
Oliver E. Amin ◽  
...  

ABSTRACTBackground & AimsTissue-resident memory T cells (TRM) are important immune sentinels that provide efficient in situ immunity. Liver-resident CD8+ TRM have been previously described, and contribute to viral control in persistent hepatotropic infections. However, little is known regarding liver CD4+ TRM cells. Here we profiled resident and non-resident intrahepatic CD4+ T cell subsets, assessing their phenotype, function, differential generation requirements and roles in hepatotropic infection.MethodsLiver tissue was obtained from 173 subjects with (n=109) or without (n=64) hepatic pathology. Multiparametric flow cytometry and immunofluorescence imaging examined T cell phenotype, functionality and location. Liver T cell function was determined after stimulation with anti-CD3/CD28 and PMA/Ionomycin. Co-cultures of blood-derived lymphocytes with hepatocyte cell lines, primary biliary epithelial cells, and precision-cut autologous liver slices were used to investigate the acquisition of liver-resident phenotypes.ResultsCD69 expression delineated two distinct subsets in the human liver. CD69HI cells were identified as CD4+ TRM due to exclusion from the circulation, a residency-associated phenotype (CXCR6+CD49a+S1PR1-PD-1+), restriction to specific liver niches, and ability to produce robust type-1 multifunctional cytokine responses. Conversely, CD69INT were an activated T cell population also found in the peripheral circulation, with a distinct homing profile (CX3CR1+CXCR3+CXCR1+), and a bias towards IL-4 production. Frequencies of CD69INT cells correlated with the degree of fibrosis in chronic hepatitis B virus infection. Interaction with hepatic epithelia was sufficient to generate CD69INT cells, while additional signals from the liver microenvironment were required to generate liver-resident CD69HI cells.ConclusionsIntermediate and high CD69 expression demarcates two discrete intrahepatic CD4+ T cell subsets with distinct developmental and functional profiles.Graphical AbstractHighlightsCD69HI (CXCR6+CD49a+S1PR1-PD-1+) are the CD4+ TRM of the human liverHepatic CD69INTCD4+ T-cells are distinct, activated, and recirculation-competentStimulation evokes respective IFN-γ and IL-4 responses in CD69HI and CD69INT cellsCD69INT cell frequencies correlate with worsening fibrosis in chronic HBV patientsLiver slice cultures allow differentiation of CD69INT and CD69HI cells from bloodLay summaryTissue-resident memory T cells (TRM) orchestrate regional immune responses, but much of the biology of liver-resident CD4+ TRM remains unknown. We found high expression of cell-surface protein CD69 defined hepatic CD4+ TRM, while simultaneously uncovering a distinct novel recirculatory CD69INT CD4+ T cell subset. Both subsets displayed unique immune receptor profiles, were functionally skewed towards type-1 and type-2 responses respectively, and had distinct generation requirements, highlighting the potential for differential roles in the immunopathology of chronic liver diseases.


2020 ◽  
Author(s):  
Luca Pangrazzi ◽  
Erin Naismith ◽  
Carina Miggitsch ◽  
Jose’ Antonio Carmona Arana ◽  
Michael Keller ◽  
...  

Abstract Background. Obesity has been associated with chronic inflammation and oxidative stress. Both conditions play a determinant role in the pathogenesis of age-related diseases, such as immunosenescence. Adipose tissue can modulate the function of the immune system with the secretion of molecules influencing the phenotype of immune cells. Recently, the importance of the bone marrow (BM) in the maintenance of antigen-experienced adaptive immune cells has been documented. Despite this, whether high body mass index (BMI) may affect immune cells in the BM and the production of molecules supporting the maintenance of these cells it is unknown. Methods. Using flow cytometry, the frequency and the phenotype of immune cell populations were measured in paired BM and PB samples obtained from persons with different BMI. Furthermore, the expression of BM cytokines was assessed. The influence of cytomegalovirus (CMV) on T cell subsets was additionally considered, dividing the donors into the CMV - and CMV + groups. Results. Our study suggests that increased BMI may affect both the maintenance and the phenotype of adaptive immune cells in the BM. While the BM levels of IL-15 and IL-6, supporting the survival of highly differentiated T cells, and oxygen radicals increased in overweight persons, the production of IFNγ and TNF by CD8 + T cells was reduced. In addition, the frequency of B cells and CD4 + T cells positively correlated with BMI in the BM of CMV - persons. Finally, the frequency of several T cell subsets, and the expression of senescence/exhaustion markers within these subpopulations, were affected by BMI. In particular, the levels of bona fide memory T cells may be reduced in overweight persons. Conclusion. Our work suggests that obesity may represent an independent risk factor supporting immunosenescence, in addition to aging and CMV. Metabolic interventions may help in improving the fitness of the immune system in the elderly.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2349-2349
Author(s):  
Claudia Brandao ◽  
Alexander M. de Bruin ◽  
Martijn A. Nolte

Abstract Abstract 2349 After immune activation, effector/memory T cells, including virus-specific CD8 T cells, are known to migrate to the bone marrow (BM), where they can be maintained by the production of IL-15 by the stroma; however, it is not yet known whether these T cells also have a function at this site. Since depletion of T cells from allogenic BM grafts compromises HSC engraftment, we hypothesize that T cells can directly influence the balance between differentiation and self-renewal of hematopoietic stem cells (HSCs). To test the ability of T cells to affect hematopoiesis, we performed co-cultures of HSCs and T cells isolated from murine BM. We found that T cells localized in the BM are able to enhance HSC differentiation as well as their self-renewal capacity. This feature is specific for BM central memory (CM) CD8 T cells, since other T cell subsets are not able to affect HSCs to the same extent. Moreover, depletion of CM CD8 T cells from the total BM T cell pool abrogates the impact on HSC differentiation and self-renewal, indicating that this particular T cell population is both sufficient and required for the observed effects. BM CM CD8 T cells do not affect quiescence of HSCs, but do enhance their proliferative capacity, and we found that supernatant from CM CD8 T cells is sufficient for this effect. Interestingly, competitive transplantation assays showed that HSCs cultured with CM CD8 T cells-derived supernatant contribute much better to leukocyte formation than medium-treated HSCs. This effect is seen in both the myeloid and lymphoid compartment, indicating that CM CD8 T cells are able to release soluble factors that support and enhance the multilineage reconstitution capacity of HSCs. Functional studies with blocking antibodies or knock-out mice showed that the supernatant-mediated effect is not caused by the hematopoietic cytokines IL3, IL6, IL21, GM-CSF, RANTES, TNFα or IFNγ. Preliminary data indicate that this feedback mechanism of the immune system on the hematopoietic process in the bone marrow is also present in the human situation, since autologous BM T cells increase the numbers of human HSCs, as well as their differentiation capacity. Overall, these findings demonstrate that T cells have an important function in the BM and that especially CD8 TCM cells can directly influence HSC homeostasis. We postulate that this feedback mechanism of the immune system on the hematopoietic process in the BM is particularly relevant during viral infection, as the efficient migration of virus-specific CD8 T cells to the BM could well benefit the replenishment of the HSC/progenitor cell compartment and restoration of blood cell numbers that got lost upon infection. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 18 (6) ◽  
pp. 788-798 ◽  
Author(s):  
M Chiarini ◽  
F Serana ◽  
C Zanotti ◽  
R Capra ◽  
S Rasia ◽  
...  

Background: Interferon-beta is used to reduce disease activity in multiple sclerosis, but its action is incompletely understood, individual treatment response varies among patients, and biological markers predicting clinical benefits have yet to be identified. Since it is known that multiple sclerosis patients have a deficit of the regulatory T-cell subsets, we investigated whether interferon-beta therapy induced modifications of the two main categories of regulatory T cells (Tregs), natural and IL-10-secreting inducible Tr1 subset, in patients who are biologically responsive to the therapy. Methods: T-cell phenotype was determined by flow cytometry, while real-time PCR was used to evaluate interferon-beta bioactivity through MxA determination, and to measure the RNA for IL-10 and CD46 molecule in peripheral blood mononuclear cells stimulated with anti-CD46 and anti-CD3 monoclonal antibodies, which are known to expand a Tr1-like population. Results: Interferon-beta induced a redistribution of natural Treg subsets with a shift of naive Tregs towards the ‘central memory-like’ Treg population that expresses the CCR7 molecule required for the in vivo suppressive activity. Furthermore, in a subgroup of treated patients, the CD46/CD3 co-stimulation, probably through the Tr1-like subset modulation, increased the production of RNA for IL-10 and CD46. The same group showed a lower median EDSS score after two years of therapy. Conclusions: The selective increase of ‘central memory-like’ subset and the involvement of the Tr1-like population may be two of the mechanisms by which interferon-beta achieves its beneficial effects. The quantification of RNA for IL-10 and CD46 could be used to identify patients with a different response to interferon-beta therapy.


2009 ◽  
Vol 29 (18) ◽  
pp. 5128-5135 ◽  
Author(s):  
Kiyokazu Kakugawa ◽  
Takuwa Yasuda ◽  
Ikuo Miura ◽  
Ayako Kobayashi ◽  
Hitomi Fukiage ◽  
...  

ABSTRACT A critical step during intrathymic T-cell development is the transition of CD4+ CD8+ double-positive (DP) cells to the major histocompatibility complex class I (MHC-I)-restricted CD4− CD8+ and MHC-II-restricted CD4+ CD8− single-positive (SP) cell stage. Here, we identify a novel gene that is essential for this process. Through the T-cell phenotype-based screening of N-ethyl-N-nitrosourea (ENU)-induced mutant mice, we established a mouse line in which numbers of CD4 and CD8 SP thymocytes as well as peripheral CD4 and CD8 T cells were dramatically reduced. Using linkage analysis and DNA sequencing, we identified a missense point mutation in a gene, E430004N04Rik (also known as themis), that does not belong to any known gene family. This orphan gene is expressed specifically in DP and SP thymocytes and peripheral T cells, whereas in mutant thymocytes the levels of protein encoded by this gene were drastically reduced. We generated E430004N04Rik-deficient mice, and their phenotype was virtually identical to that of the ENU mutant mice, thereby confirming that this gene is essential for the development of SP thymocytes.


2009 ◽  
Vol 29 (14) ◽  
pp. 3894-3904 ◽  
Author(s):  
Tomofusa Fukuyama ◽  
Lawryn H. Kasper ◽  
Fayçal Boussouar ◽  
Trushar Jeevan ◽  
Jan van Deursen ◽  
...  

ABSTRACT Defining the chromatin modifications and transcriptional mechanisms that direct the development of different T-cell lineages is a major challenge in immunology. The transcriptional coactivators CREB binding protein (CBP) and the closely related p300, which comprise the KAT3 family of histone/protein lysine acetyltransferases, interact with over 50 T-lymphocyte-essential transcriptional regulators. We show here that CBP, but not p300, modulates the thymic development of conventional adaptive T cells versus those having unconventional innate functions. Conditional inactivation of CBP in the thymus yielded CD8 single-positive (SP) thymocytes with an effector-, memory-, or innate-like T-cell phenotype. In this regard, CD8 SP thymocytes in CBP mutant mice were phenotypically similar to those reported for Itk and Rlk protein tyrosine kinase mutants, including the increased expression of the T-cell master regulatory transcription factor eomesodermin (Eomes) and the interleukin-2 and -15 receptor beta chain (CD122) and an enhanced ability to rapidly produce gamma interferon. CBP was required for the expression of the Itk-dependent genes Egr2, Egr3, and Il2, suggesting that CBP helps mediate Itk-responsive transcription. CBP therefore defines a nuclear component of the signaling pathways that demarcate the development of innate and adaptive naïve CD8+ T cells in the thymus.


2021 ◽  
Vol Volume 14 ◽  
pp. 5149-5163
Author(s):  
Di Wang ◽  
Yu Jiang ◽  
Yangzi Song ◽  
Yongqin Zeng ◽  
Cuilin Li ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5626-5626
Author(s):  
Irene Scarfò ◽  
Kathleen Gallagher ◽  
Marcela V. Maus ◽  
Rebecca Larson ◽  
Maegan Sheehan ◽  
...  

Chimeric antigen receptor T-cells (CAR-T) have emerged as an extremely promising therapy for hematological malignancies. The immunophenotype of apheresis material and the CAR-T cell product is known to be predictive of the likelihood of response to treatment of certain malignancies. Central memory and stem cell-like memory T cell phenotypes are associated with a more sustained proliferative response and long-term CAR-T persistence (Fraietta et al, Nature Medicine, 2018). There is an unmet need for standardized methods and reagents to reliably profile the memory phenotype of CAR-Ts to better evaluate product quality, and support improvements in CAR-T manufacturing. The BD Biosciences dried memory T-cell panel contains a pre-validated mixture of 7 antibodies for the identification of naïve, stem cell memory, central memory and effector memory CD4+ and CD8+ T cell subsets. The pre-mixed dried antibody tube offers consistency in staining profiles over time and reduces the risk of operator errors. Additional drop-in antibodies can complement the panel and enable more in-depth evaluation of the T cell phenotype. Here we demonstrate the use of this panel with drop-in markers to monitor changes in expression of PD-1, TIM-3, LAG-3, HLA-DR, CD45RO, and CXCR3 on T cells transduced to express our novel anti-CD37 CAR. Cells were stained at day 0 prior to transduction, day 7, and following resting and re-stimulation, and acquired on a 12 color BD FACS Lyric. The use of a standardized memory T-cell panel will allow us to more accurately evaluate how T-cell phenotype impacts on the efficacy and longevity of response in patients receiving CAR-T therapies. Disclosures Maus: INFO PENDING: Other: INFO PENDING. Bornheimer:BD Biosciences: Employment. Hanley:BD Biosciences: Employment. Frigault:Novartis: Patents & Royalties: Royalty; Arcellx, Celgene, Foundation Medicine, Kite/Gilead, Nkarta, Novartis, and Xenetic: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document