Paste backward extrusion process as a suitable method for fabrication of sodium beta-alumina electrolyte closed-end tubes

Author(s):  
Hajar Ahmadi Moghadam ◽  
Mohammad Hossein Paydar
1977 ◽  
Vol 60 (5-6) ◽  
pp. 226-229 ◽  
Author(s):  
R. J. GRANT ◽  
I. M. HODGE ◽  
M. D. INGRAM ◽  
ANTHONY R. WEST

1979 ◽  
Vol 30 (12) ◽  
pp. i
Author(s):  
K.K. Kim ◽  
J.N. Mundy ◽  
W.K. Chen

2009 ◽  
Vol 8 (11) ◽  
pp. 898-903 ◽  
Author(s):  
Bhola N. Pal ◽  
Bal Mukund Dhar ◽  
Kevin C. See ◽  
Howard E. Katz

Author(s):  
Zane A. Grady ◽  
Arnaud Ndayishimiye ◽  
Clive A Randall

The cold sintering process is successfully applied to one of the most refractory solid-state sodium-ion electrolytes, namely sodium beta alumina (SBA). By using a hydroxide-based transient solvent, SBA is densified...


Author(s):  
B.S. Moroz ◽  
M.G. Dudnik

The parameters of deformation degree at theoretical and experimental researches of cold backward extrusion processes of hollow glasses-type products are considered. The dependences of their relationship with the relative degree of deformation and the scale of their conformity are suggested. The published results of experimental and theoretical studies on the impact of technological parameters of the backward extrusion process of hollow products in the conditions of active friction forces to reduce the deformation force and stress-strain state of the billet are analyzed. Insuffi ciently studied features of the process and the possibility for expanding of the application fi eld of the backward extrusion method with the active action of friction forces are noted. The method for calculating of the deformation rate required to determine the current stress in the implementation of the hot backward extrusion process.


2006 ◽  
Vol 519-521 ◽  
pp. 955-960 ◽  
Author(s):  
Dong Hwan Jang ◽  
J.H. Ok ◽  
G.M. Lee ◽  
Beong Bok Hwang

Numerical analysis of radial extrusion process combined with backward extrusion has been performed to investigate the forming characteristics of an aluminum alloy in a combined extrusion process. Various variables such as gap size, die corner radius and frictional conditions are adopted as design or process parameters for analysis in this paper. The main investigation is focused on the analysis of forming characteristics of AA 2024 aluminum alloy in terms of material flow into backward can and radial flange sections. Due to various die geometries and process conditions such as frictional conditions, the material flow into a can and flange shows different patterns during the combined extrusion process and its characteristics are well summarized quantitatively in this paper in terms of forming load, volume ratio etc. Extensive simulation work leads to quantitative relationships between process conditions and the forming characteristics such as volume ratio of flange to can and the size of can and flange in terms of the can height extruded backward. It is easily seen from the simulation results that the volume ratio, which is defined as the ratio of flange volume to can volume, increases as the gap size and/or die corner radius increase. However, it is interesting to note that the frictional condition has little influence on the forming load and the deformation patterns. Usually, the frictional condition is a greatest process variable in normal forging operation. It might be believed from the simulation results that the frictional conditions are not a major process parameter in case of combined extrusion processes. It is also found that the can size, which is defined as the height of billet after forming, turns out to be even smaller than that of initial billet under a certain condition of die geometry.


Sign in / Sign up

Export Citation Format

Share Document