Experimental investigation of effects of build parameters on flexural properties in fused deposition modelling parts

2017 ◽  
Vol 12 (3) ◽  
pp. 207-220 ◽  
Author(s):  
Krishna P. Motaparti ◽  
Gregory Taylor ◽  
Ming C. Leu ◽  
K. Chandrashekhara ◽  
James Castle ◽  
...  
2020 ◽  
Vol 68 (4) ◽  
pp. 4-8
Author(s):  
Suzana Kutnjak-Mravlinčić ◽  
Ana Pilipović ◽  
Damir Godec

In the footwear industry, increasing attention is paid to design-shaped heels. But that design involves production of the complicated geometry, personalised heels (i.g. small series), light weight heels and if possible cheap production. Technology that enables and combines that is additive manufacturing (AM). One of AM low budget technology and machine is fused deposition modeling (FDM). In FDM, product is built layer by layer and with different types and density of inside mesh structures which enables complex geometry and low mass. When walking, the heel is loaded from above with compression force of the person's weight, while lateral, heel is loaded with flexural force and impact. Considering the design of the heel itself, it is necessary to orientate the product correctly in the working space of the machine. Orientation further raises the question of mechanical properties on such produced heel. In this paper it is tested flexural properties of two different orientation considering production of the actual heel. Furthermore, the analysis of the processing parameters (layer thickness, infill density and temperature) have been done to determine their influence on the flexural properties in these two orientations.


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2289
Author(s):  
Nishata Royan Rajendran Royan ◽  
Jie Sheng Leong ◽  
Wai Nam Chan ◽  
Jie Ren Tan ◽  
Zainon Sharmila Binti Shamsuddin

As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years. This review attempts to summarise the current approaches of using NFRC as a feeder for AM. The effects of fibre treatments, composite preparation methods and addition of compatibilizer agents were analysed and discussed. Additionally, current methods of producing feeders from NFRCs were reviewed and discussed. Mechanical property of printed part was also dependent on the printing parameters, and thus the effects of printing temperature, layer height, infill and raster angle were discussed, and the best parameters reported by other researchers were identified. Following that, an overview of the mechanical properties of these composites as reported by various researchers was provided. Next, the use of optimisation techniques for NFRCs was discussed and analysed. Lastly, the review provided a critical discussion on the overall topic, identified all research gaps present in the use of NFRC for AM processes, and to overcome future challenges.


Sign in / Sign up

Export Citation Format

Share Document