Experimental investigations on the elastic parameters and uniaxial compressive strength of slate under freeze–thaw cycles

2019 ◽  
Vol 14 (4) ◽  
pp. 285-296
Author(s):  
Helin Fu ◽  
Jiabing Zhang ◽  
Zhen Huang ◽  
Yue Shi ◽  
Jing Wang
2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


Author(s):  
Balázs Czinder ◽  
Ákos Török

Abstract Aggregates are necessary materials for the construction industry. Owing to their favourable properties, andesites are frequently used rock materials; hence, the investigation of their mechanical and aggregate properties has great significance. This paper introduces the analyses of 13 Hungarian andesite lithotypes. The samples were collected from six andesite quarries in Hungary. Cylindrical specimens and aggregate samples with 10.0/14.0-mm-sized grains were made from rock blocks. The specimens were tested in dry, water-saturated and freeze–thaw subjected conditions. Bulk density, uniaxial compressive strength, modulus of elasticity, indirect tensile strength and water absorption were measured. The abrasion resistance was tested by micro-Deval tests. The flakiness indexes of the samples were also measured. The data set of the laboratory test results provided input for further, one- and two-variable statistical analyses. According to the test results, there is no significant difference between the strength parameters measured in water-saturated and in freeze–thaw subjected conditions. The correlation and regression analyses revealed relationships between some rock mechanical parameters, as well as between micro-Deval coefficient and uniaxial compressive strength.


2018 ◽  
Vol 5 (10) ◽  
pp. 180779 ◽  
Author(s):  
Zhong-jian Zhang ◽  
Jian-bin Liu ◽  
Biao Li ◽  
Xi-guang Yang

Thermally induced deterioration behaviour can cause severe weathering in marbles. Most previous studies focus on the deterioration behaviour of calcitic marbles. Relevant studies of dolomitic marbles are generally carried out under a ‘high temperature and low cycling times' condition. Little attention is focused on the deterioration behaviour in dolomitic marbles when they are subjected to a large quantity of heating–cooling cycles under a ‘low temperature and high cycling times’ condition. This paper presents experimental investigations on the thermally induced deterioration behaviour of two Beijing dolomitic marbles (Qingbaishi Marble (QM) and Hanbaiyu Marble (HM)) under heating–cooling cycles up to 1000 cycling times. The applied temperature range is from –20°C to 60°C which is to simulate the seasonal temperature variations in Beijing city, China. Related properties such as weight loss, three-dimensional microtopography, elastic wave velocity and uniaxial compressive strength were measured at certain cycles. The results indicate that thermally induced deterioration behaviour will result in a continuous weight loss in dolomitic marble samples. Mechanical properties of those two marbles are strongly affected by heating and cooling treatments, which were reflected by the reductions of dynamic Young's modulus and uniaxial compressive strength with an increase of thermal cycles. Compared with QM, HM displays a higher level of thermally induced deterioration which should be due to the abundance of quartz mineral.


2017 ◽  
Vol 43 (3) ◽  
pp. 1165 ◽  
Author(s):  
A. Karagianni ◽  
G. Karoutzos ◽  
S. Ktena ◽  
N. Vagenas ◽  
I. Vlachopoulos ◽  
...  

The aim of this paper is to determine the elastic parameters of some rocks and especially limestones, schist, sandstones, conglomerates, peridotites and granites using a large number of laboratory tests performed on intact rock samples. The range of values for Young`s modulus and uniaxial compressive strength is evaluated, while the relationship between elastic and strength parameters is defined. Regression analyses were applied to define relations among these parameters and the range of values of modulus ratio (MR) is estimated for each rock type.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rui-heng Li ◽  
Zhong-guang Sun ◽  
Jiang-fu He ◽  
Zhi-wei Liao ◽  
Lei Li ◽  
...  

As one of the most important unconventional hydrocarbon resources, the oil shale has been extracted with a frozen wall to successfully increase the shale oil production and reduce environmental pollution, which results from the harmful liquids in the in situ conversion processing of oil shale. Thereby, the strength and permeability of the frozen wall are extremely critical to reduce the harmful chemicals leaching into the groundwater. However, the permeability and strength of the frozen wall can be influenced by periodic freeze-thaw cycles. In order to investigate the damage and deterioration characteristics of oil shale samples after various periodic freeze-thaw cycles, the oil shale samples were periodically frozen and thawed as many as 48 times, after which the sample mass, stress-strain, freeze-thaw coefficient, uniaxial compressive strength, elastic modulus, and longitudinal wave velocity of the oil shale samples were separately measured. According to the measured results, the number of freeze-thaw cycles greatly influenced the physical and mechanical properties of oil shale samples. The uniaxial compressive strength and elastic modulus of the oil shale samples were changed with maximum variation rates of 64% and 65%, respectively. Meanwhile, the freeze-thaw coefficient of measured oil shale samples exponentially decreased with the increased number of freeze-thaw cycles, whereas the longitudinal wave velocity of tested samples ranged from 1602 m/s to 2464 m/s as a result of the new micropores inside the oil shale sample. Research results have enormous significance to the efficient and safe in situ exploitation of oil shale deposits.


2020 ◽  
Vol 10 (5) ◽  
pp. 1707 ◽  
Author(s):  
Keunbo Park ◽  
Kiju Kim ◽  
Kichoel Lee ◽  
Dongwook Kim

In order to investigate the weathering characteristics of rocks in response to freeze-thaw conditions in northern latitudes, we analysed meteorological data from the Ny-Ålesund region in Norway, and observed changes in the physical and mechanical properties of rocks of dolomite and quartzite. To assess the effects of freeze-thaw weathering on these rock properties, 900 cycles of long-term freeze-thaw tests were conducted for the sampled rocks in two locations. P-wave velocity, absorption, shore hardness, and the uniaxial compressive strength of the sampled rocks were measured at every 150 cycles in order to analyse physical and mechanical mediator variables of freeze-thaw weathering. It was found that an increasing number of freeze-thaw cycle on the sampled rocks decreases uniaxial compressive strength, shore hardness, and P-wave velocity and increases absorption.


Sign in / Sign up

Export Citation Format

Share Document