A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze–thaw

2015 ◽  
Vol 120 ◽  
pp. 96-107 ◽  
Author(s):  
Quansheng Liu ◽  
Shibing Huang ◽  
Yongshui Kang ◽  
Xuewei Liu
2021 ◽  
Vol 11 (22) ◽  
pp. 10653
Author(s):  
Jingwei Gao ◽  
Chao Xu ◽  
Yan Xi ◽  
Lifeng Fan

This study investigated the effects of freezing temperature under freeze-thaw cycling conditions on the mechanical behavior of sandstone. First, the sandstone specimens were subjected to 10-time freeze-thaw cycling treatments at different freezing temperatures (−20, −40, −50, and −60 °C). Subsequently, a series of density, ultrasonic wave, and static and dynamic mechanical behavior tests were carried out. Finally, the effects of freezing temperature on the density, P-wave velocity, stress–strain curves, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption of sandstone were discussed. The results show that the density slightly decreases as temperature decreases, approximately by 1.0% at −60 °C compared with that at 20 °C. The P-wave velocity, static and dynamic uniaxial compressive strength, static elastic modulus, and dynamic energy absorption obviously decrease. As freezing temperature decreases from 20 to −60 °C, the static uniaxial compressive strength, static elastic modulus, dynamic strength, and dynamic energy absorption of sandstone decrease by 16.8%, 21.2%, 30.8%, and 30.7%, respectively. The dynamic mechanical behavior is more sensitive to the freezing temperature during freeze-thawing cycling compared with the static mechanical behavior. In addition, a higher strain rate can induce a higher dynamic strength and energy absorption.


Author(s):  
Balázs Czinder ◽  
Ákos Török

Abstract Aggregates are necessary materials for the construction industry. Owing to their favourable properties, andesites are frequently used rock materials; hence, the investigation of their mechanical and aggregate properties has great significance. This paper introduces the analyses of 13 Hungarian andesite lithotypes. The samples were collected from six andesite quarries in Hungary. Cylindrical specimens and aggregate samples with 10.0/14.0-mm-sized grains were made from rock blocks. The specimens were tested in dry, water-saturated and freeze–thaw subjected conditions. Bulk density, uniaxial compressive strength, modulus of elasticity, indirect tensile strength and water absorption were measured. The abrasion resistance was tested by micro-Deval tests. The flakiness indexes of the samples were also measured. The data set of the laboratory test results provided input for further, one- and two-variable statistical analyses. According to the test results, there is no significant difference between the strength parameters measured in water-saturated and in freeze–thaw subjected conditions. The correlation and regression analyses revealed relationships between some rock mechanical parameters, as well as between micro-Deval coefficient and uniaxial compressive strength.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260183
Author(s):  
Mengqi Zhang ◽  
Xianguo Yan ◽  
Guoqiang Qin

This paper proposes a cutting head optimization method based on meshing the spatial position of the picks. According to the expanded shape of the spatial mesh composed of four adjacent picks on the plane, a standard mesh shape analysis method can be established with mesh skewness, mesh symmetry, and mesh area ratio as the indicators. The traversal algorithm is used to calculate the theoretical meshing rate, pick rotation coefficient, and the variation of cutting load for the longitudinal cutting head with 2, 3, and 4 helices. The results show that the 3-helix longitudinal cutting head has better performance. By using the traversal result with maximum theoretical meshing rate as the design parameter, the longitudinal cutting head CH51 with 51 picks was designed and analyzed. The prediction model of pick consumption is established based on cutting speed, direct rock cutting volume of each pick, pick rotation coefficient, uniaxial compressive strength, and CERCHAR abrasivity index. And the rock with normal distribution characteristics of Uniaxial Compressive Strength is used for the specific energy calculating. The artificial rock wall cutting test results show that the reduction in height loss suppresses the increase in pick equivalent loss caused by the increase in mass loss, and the pick consumption in this test is only 0.037–0.054 picks/m3. In addition, the correlation between the actual pick consumption and the prediction model, and the correlation between the actual cutting specific energy and the theoretical calculation value are also analyzed. The research results show that the pick arrangement design method based on meshing pick tip spatial position can effectively reduce pick consumption and improve the rock cutting performance.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 886
Author(s):  
Hongwei Deng ◽  
Tao Duan ◽  
Guanglin Tian ◽  
Yao Liu ◽  
Weiyou Zhang

In order to further study the internal relationship between the microscopic pore characteristics and macroscopic mechanical properties of cemented tailings backfill (CTB), in this study, mine tailings and ordinary Portland cement (PC32.5) were selected as aggregate and cementing materials, respectively, and different additives (anionic polyacrylamide (APAM), lime and fly ash) were added to backfill samples with mass concentration of 74% and cement–sand ratios of 1:4, 1:6 and 1:8. After 28 days of curing, based on the uniaxial compressive strength test, nuclear magnetic resonance (NMR) porosity test and the fractal characteristics of pore structure, the relationships of the compressive strength with the proportion and fractal dimension of pores with different radii were analyzed. The uniaxial compressive strength prediction model of the CTB with the proportion of harmless pores and the fractal dimension of harmful pores as independent variables was established. The results show that the internal pores of the material are mainly the harmless and less harmful pores, and the sum of the average proportions of the two reaches 73.45%. Some characterization parameters of pore structure have a high correlation with the compressive strength. Among them, the correlation coefficients of compressive strength with the proportion of harmless pores and fractal dimension of harmful pores are 0.9219 and 0.9049, respectively. The regression results of the strength prediction model are significant, and the correlation coefficient is 0.9524. The predicted strength value is close to the actual strength value, and the predicted results are accurate and reliable.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rui-heng Li ◽  
Zhong-guang Sun ◽  
Jiang-fu He ◽  
Zhi-wei Liao ◽  
Lei Li ◽  
...  

As one of the most important unconventional hydrocarbon resources, the oil shale has been extracted with a frozen wall to successfully increase the shale oil production and reduce environmental pollution, which results from the harmful liquids in the in situ conversion processing of oil shale. Thereby, the strength and permeability of the frozen wall are extremely critical to reduce the harmful chemicals leaching into the groundwater. However, the permeability and strength of the frozen wall can be influenced by periodic freeze-thaw cycles. In order to investigate the damage and deterioration characteristics of oil shale samples after various periodic freeze-thaw cycles, the oil shale samples were periodically frozen and thawed as many as 48 times, after which the sample mass, stress-strain, freeze-thaw coefficient, uniaxial compressive strength, elastic modulus, and longitudinal wave velocity of the oil shale samples were separately measured. According to the measured results, the number of freeze-thaw cycles greatly influenced the physical and mechanical properties of oil shale samples. The uniaxial compressive strength and elastic modulus of the oil shale samples were changed with maximum variation rates of 64% and 65%, respectively. Meanwhile, the freeze-thaw coefficient of measured oil shale samples exponentially decreased with the increased number of freeze-thaw cycles, whereas the longitudinal wave velocity of tested samples ranged from 1602 m/s to 2464 m/s as a result of the new micropores inside the oil shale sample. Research results have enormous significance to the efficient and safe in situ exploitation of oil shale deposits.


Sign in / Sign up

Export Citation Format

Share Document