scholarly journals In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography

Author(s):  
Simon J. Altenburg ◽  
Anne Straße ◽  
Andrey Gumenyuk ◽  
Christiane Maierhofer
2016 ◽  
Vol 83 ◽  
pp. 1244-1252 ◽  
Author(s):  
Ulf Hassler ◽  
Daniel Gruber ◽  
Oliver Hentschel ◽  
Frank Sukowski ◽  
Tobias Grulich ◽  
...  

2021 ◽  
Vol 129 (18) ◽  
pp. 183305
Author(s):  
Mário Janda ◽  
Mostafa E. Hassan ◽  
Viktor Martišovitš ◽  
Karol Hensel ◽  
Michal Kwiatkowski ◽  
...  

Author(s):  
Hanyu Song ◽  
Minglang Li ◽  
Muxuan Wang ◽  
Benxin Wu ◽  
Ze Liu ◽  
...  

Abstract A preliminary experimental study on “warm ultrasonic impact-assisted laser metal deposition” (WUI-LMD) is reported, and such a study is rare in literatures to the authors' knowledge. In WUI-LMD, an ultrasonic impact treatment (UIT) tip is placed near laser spot for in-situ treatment of laser-deposited warm solid material, and the UIT and LMD processes proceed simultaneously. Under the conditions investigated, it is found that in-situ UIT during WUI-LMD can be much more effective in reducing porosity than a post-process UIT. Possible underlying mechanisms are analyzed. WUI-LMD has a great potential to reduce defects and improve mechanical properties without increasing manufacturing time.


Author(s):  
Yi Zheng ◽  
Beiwen Li

Abstract In-situ inspection has drawn many attentions in manufacturing due to the importance of quality assurance. Having an accurate and robust in-situ monitoring can assist corrective actions for a closed-loop control of a manufacturing process. The fringe projection technique, as a variation of the structured light technique, has demonstrated significant potential for real-time in-situ monitoring and inspection given its merits of conducting simultaneous high-speed and high accuracy measurements. However, high-speed 3D scanning methods like fringe projection technique are typically based on triangulation principle, meaning that the depth information is retrieved by analyzing the triangulation relationship between the light emitter (i.e., projector), the image receiver (i.e., camera) and the tested sample surface. Such measurement scheme cannot reconstruct 3D surfaces where large geometrical variations are present, such as a deep-hole or a stair geometry. This is because large geometrical variations will block the auxiliary light used in the triangulation based methods, which will resultantly cause a shadowed area to occur. In this paper, we propose a uniaxial fringe projection technique to address such limitation. We measured a stair model using both conventional triangulation-based fringe projection technique and the proposed method for comparison. Our experiment demonstrates that the proposed uniaxial fringe projection technique can perform high-speed 3D scanning without shadows appearing in the scene. Quantitative testing shows that an accuracy of 1.15% can be obtained using the proposed uniaxial fringe projection system.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3584 ◽  
Author(s):  
Briac Lanfant ◽  
Florian Bär ◽  
Antaryami Mohanta ◽  
Marc Leparoux

Laser Metal Deposition (LMD) offers new perspectives for the fabrication of metal matrix nanocomposites (MMnCs). Current methods to produce MMnCs by LMD systematically involve the premixing of the nanopowders and the micropowders or require in-situ strategies, thereby restricting the possibilities to adjust the nature, content and location of the nano-reinforcement during printing. The objective of this study is to overcome such restrictions and propose a new process approach by direct injection of nanoparticles into a metallic matrix. Alumina (n-Al2O3) nanoparticles were introduced into a titanium matrix by using two different direct dry injection modes in order to locally increase the hardness. Energy dispersive X-ray spectroscopy (EDS) analyses validate the successful incorporation of the n-Al2O3 at chosen locations. Optical and high resolution transmission electron microscopic (HR-TEM) observations as well as X-ray diffraction (XRD) analyses indicate that n-Al2O3 powders are partly or totally dissolved into the Ti melted pool leading to the in-situ formation of a composite consisting of fine α2 lamellar microstructure within a Ti matrix and a solid solution with oxygen. Mechanical tests show a significant increase in hardness with the increase of injected n-Al2O3 amount. A maximum of 620 HV was measured that is almost 4 times higher than the pure LMD-printed Ti structure.


2019 ◽  
Vol 364 ◽  
pp. 115-126 ◽  
Author(s):  
N. Ur Rahman ◽  
L. Capuano ◽  
M.B. de Rooij ◽  
D.T.A. Matthews ◽  
A. Garcia-Junceda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document