Passenger car units and saturation flow models for highly heterogeneous traffic at urban signalised intersections

2011 ◽  
Vol 7 (2) ◽  
pp. 141-162 ◽  
Author(s):  
Padmakumar Radhakrishnan ◽  
Tom V. Mathew
PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256620
Author(s):  
Sugiarto Sugiarto ◽  
Fadhlullah Apriandy ◽  
Yusria Darma ◽  
Sofyan M. Saleh ◽  
Muhammad Rusdi ◽  
...  

Pretimed signalized intersection is known as a common source of congestion, especially in urban heterogeneous traffic. Furthermore, the accuracy of saturation flow rate is found to cause efficient and vital capacity estimation, in order to ensure optimal design and operation of the signal timings. Presently, the traffic also consists of diverse vehicle presence, each with its own static and dynamic characteristics. The passenger car equivalent (PCE) in an essential unit is also used to measure heterogenous traffic into the PCU (Passenger Car Unit). Based on the collection of observed data at three targets in Banda Aceh City, this study aims to redetermine the PCEs by using Bayesian linear regression, through the Random-walk Metropolis-Hastings and Gibbs sampling. The result showed that the obtained PCE values were 0.24, 1.0, and 0.80 for motorcycle (MC), passenger car (PC), and motorized rickshaw (MR), respectively. It also showed that a significant deviation was found between new and IHCM PCEs, as the source of error was partially due to the vehicle compositions. The present traffic characteristics were also substantially different from the prevailing conditions of IHCM 1997. Therefore, the proposed PCEs enhanced the accuracy of base saturation flow prediction, provided support for traffic operation design, alleviated congestion, and reduced delay within the city, which in turn improved the estimation of signalized intersection capacity.


The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


2018 ◽  
Vol 118 ◽  
pp. 38-51 ◽  
Author(s):  
Arpita Saha ◽  
Souvik Chakraborty ◽  
Satish Chandra ◽  
Indrajit Ghosh

Author(s):  
Raunak Mishra ◽  
Pallav Kumar ◽  
Shriniwas S. Arkatkar ◽  
Ashoke Kumar Sarkar ◽  
Gaurang J. Joshi

This research was aimed at developing an area occupancy–based method for estimating passenger car unit (PCU) values for vehicle categories under heterogeneous traffic conditions on multilane urban roads for a wide range of traffic flow levels. First, PCU values of vehicle categories were determined according to the Transport and Road Research Laboratory definition and replaced the commonly considered measure of performance speed with area occupancy using simulation. The PCU values obtained were found to be significantly different for different volume-to-capacity ratios; this result shows that the PCU value is dynamic in nature. While the dynamic nature of PCU values is well appreciated, practitioners may prefer a single set of optimized PCU values (unique for each vehicle category). Hence, a new method with a matrix solution was proposed to estimate the optimized or unique set of PCU values with area occupancy as the performance measure. To check the credibility of the proposed method, the estimated PCU values were compared from existing guidelines regulated by the Indian Roads Congress (IRC) and values estimated with the widely accepted dynamic PCU concept of speed–area ratio. Results show that the PCU values suggested by IRC and the dynamic PCU concept using the speed–area ratio underestimate and overestimate the flows, respectively, at different traffic volumes. However, the values obtained with the area-occupancy concept were found to be consistent with the traffic flow in a cars-only traffic situation at different flow conditions. The derived set of optimized PCU values proposed can be useful for traffic engineers, researchers, and practitioners for capacity and level-of-service analysis under heterogeneous traffic conditions.


Author(s):  
Sabyasachi Biswas ◽  
Souvik Chakraborty ◽  
Indrajit Ghosh ◽  
Satish Chandra

Saturation flow is one of the most important functional parameters at signalized intersections. It is to be noted that saturation flow is a functional measure of the intersection operation, which indicates the probable capacity if working in an ideal situation. However, determination of the saturation flow is a challenging task in developing countries like India where vehicles with diverse static and dynamic characteristics use the same carriageway. At the same time, it is influenced by several other factors. In this context, the present research is carried out to examine the effects of traffic composition, approach width and right-turning movements on saturation flow under heterogeneous traffic conditions. This paper proposes a model for computing saturation flow at the signalized intersection under mixed traffic condition based on Kriging approach. A detailed comparison of the mean saturation flow values obtained by the conventional method, regression method, and Kriging method has also been presented. Low mean absolute percentage error values (<5%) have been obtained for saturation flow by Kriging method with respect to the conventional method. Finally, the proposed models are used to evaluate the impact of right-turning vehicles on saturation flow under shared lane condition.


2016 ◽  
Vol 43 (7) ◽  
pp. 593-598 ◽  
Author(s):  
Mithun Mohan ◽  
Satish Chandra

Traffic in developing countries is often distinguished from others for its diversity in vehicular composition and passenger car equivalents (PCE) becomes essential in such conditions for expressing traffic volume in terms of equivalent number of passenger cars. The PCE estimation at two-way stop-controlled intersections in developing countries is further complicated by the lack of movement priority and lane discipline. The study introduces a method to find PCE factors based on the time taken by a queue of vehicles to completely clear the intersection and composition of the queue. The method is validated through simulations in VISSIM software and was then used to derive PCE factors for three intersections in India. Although the method is developed and tested to estimate PCE factors under highly heterogeneous traffic at priority junctions in India, it is quite general in nature and can be used in traffic conditions found in developed countries as well.


Sign in / Sign up

Export Citation Format

Share Document