20—SOME PHYSICAL PROPERTIES OF KNITTED FABRICS. II—Relations of Fabric Thickness to Yarn Properties

1936 ◽  
Vol 27 (8) ◽  
pp. T207-T215 ◽  
Author(s):  
C. H. Edwards
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Baneswar Sarker ◽  
Shankar Chakraborty

Purpose Like all other natural fibers, the physical properties of cotton also vary owing to changes in the related genetic and environmental factors, which ultimately affect both the mechanics involved in yarn spinning and the quality of the yarn produced. However, information is lacking about the degree of influence that those properties impart on the spinnability of cotton fiber and the strength of the final yarn. This paper aims to discuss this issue. Design/methodology/approach This paper proposes the application of discriminant analysis as a multivariate regression tool to develop the causal relationships between six cotton fiber properties, i.e. fiber strength (FS), fiber fineness (FF), upper half mean length (UHML), uniformity index (UI), reflectance degree and yellowness and spinning consistency index (SCI) and yarn strength (YS) along with the determination of the respective contributive roles of those fiber properties on the considered dependent variables. Findings Based on the developed discriminant function, it can be revealed that FS, UI, FF and reflectance degree are responsible for higher YS. On the other hand, with increasing values of UHML and fiber yellowness, YS would tend to decrease. Similarly, SCI would increase with higher values of FS, UHML, UI and reflectance degree, and its value would decrease with increasing FF and yellowness. Originality/value The discriminant functions can effectively envisage the contributive role of each of the considered cotton fiber properties on SCI and YS. The discriminant analysis can also be adopted as an efficient tool for investigating the effects of various physical properties of other natural fibers on the corresponding yarn characteristics.


2021 ◽  
pp. 004051752110550
Author(s):  
Norina Asfand ◽  
Virginija Daukantienė

Different fiber blends, knit patterns, and treatments may be applied to increase the functionality and comfort of knitted fabrics. In this research, the physical properties and bending stiffness of 1 × 1 rib and half-milano rib fabrics with four fiber blends (90% cotton/10% antistatic PET, 80% cotton/20% antistatic PET, 70% cotton/30% antistatic PET, and 65% cotton/35% antistatic PET) applied to each knit pattern were studied. The effect of fabric direction (course and wale), technical side (face side and back side), and treatment (dying, softening with Aquasoft® SI hydrophilic softener, and Polygiene VO-600 antibacterial finish) on the physical characteristics and bending stiffness of the fabrics was evaluated. The results revealed that dyeing and softening increased the fabric area density and both wale and course densities and decreased fabric thicknesses compared to the control fabrics. The antibacterial finish applied to the softened samples did not change the physical properties. Bending stiffness in the course direction was lower than in the wale direction, and it was higher for technical face samples than for technical back ones. The 1 × 1 rib knitted fabrics showed lower stiffness than the half-milano rib fabrics. Treatment of the investigated fabrics decreased bending stiffness for both treatment sample groups compared to the control group.


2020 ◽  
Vol 20 (3) ◽  
pp. 299-311
Author(s):  
Brahem Mariem ◽  
Messaoudi Wissal ◽  
Khedher Faouzi ◽  
Jaouachi Boubaker ◽  
Dominique Adolphe

AbstractThe article evaluates the amount of the consumed sewing thread for women's underwear (underwear bras and panties). Based on the obtained findings, it was concluded that sewing thread amount depends enormously on the studied influential parameters. The present paper reports a contribution that allows industries and researchers to decrease the consumed amounts of sewing thread in case of women's underwear and panties The study takes into account the different stitch structures and fabric characteristics that are usually used. The effects of influential input parameters, such as fabric thickness, number of assembled layers, stitch density, and tension of the thread, are investigated. Useful models have been found and can be used by industries to accuracy predict the thread consumption for women's underwear and panties to launch the needed thread commands. The developed models use multiregressive method. In this study, the fabrics that have been considered are knitted fabrics because they are those used in women's underwear. We found that women's underwear bras consume more sewing threads than panties. Using linear regression method, good relationships (coefficients of correlation close to 1) between consumption behaviors and the investigated parameters such as fabric thickness, number of assembled layers, stitch number per centimeter, sizes and tension of threads, were found. Although, the increase of threads tension to sew female underwear decreases the consumed amount of threads, the increase of other studied parameters widely encourages the consumption values, especially for seams based on chain-stitch types.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 572-580 ◽  
Author(s):  
Rong Yin ◽  
Xiao-Ming Tao ◽  
Bin-gang Xu

This paper experimentally studies the relationship between the friction surface of a false-twisting unit and the quality of cotton yarns produced by a modified ring spinning system, with the adoption of the single friction-belt false-twister. The friction surface of the false-twisting unit, as a key twisting component, has been studied in terms of material, surface roughness, hardness and diameter, as well as the interaction between these factors and resultant yarn properties, with particular attention to yarn imperfections. Experimental results showed that the false-twisting unit with a short interactive path demonstrated significant reduction of yarn imperfections, especially yarn neps. With the optimal false-twisting unit, performances of the modified yarns and their knitted fabrics were evaluated and compared with the conventional ones.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Waqar Iqbal ◽  
Yaming Jiang ◽  
Ye-xiong Qi ◽  
Lei Xu

AbstractTextile yarns are subjected to numerous types of forces during knitting, usually leading to yarn damages, such as decrease in tensile, bending, shearing, and surface properties, which are closely related to different yarn properties, knitted structures/actions, and machine settings. This article comprehensively evaluated yarn damages in the computerized flat knitting process. Five different commercially available and commonly used yarns including cotton, wool, polyester, acrylic, and viscose were selected as raw materials, and the tensile, bending, shear, and frictional properties were investigated and compared before knitting and after being unraveled from plain- and rib-knitted fabrics, respectively. The results show that knitting actions/structures exhibit different damage extents for all different raw materials. It has been observed that the modulus is declined by 3–30% for bending, 2–10% for tensile, and 8–80% for shearing due to flat knitting action, respectively. The frictional coefficient of yarns also increased from 6 to 23%. As compared to yarn before knitting, the yarns unroved from plain and rib structures have been damaged to a great extent as a result of the loss of mechanical properties. The results are completely in agreement with the statistical analysis that clearly represents the significant loss in yarn properties during the knitting process. The microscopic analysis of the yarns clearly illustrates the effect of knitting action on yarn surface and mechanical properties. For yarn’s cross-sectional shearing properties testing, this article self-designed an innovative “Yarn Shear Testing Device.” The methodology and results are of great importance for improving the quality of knitted products, evaluating knitting yarns’ knittability, and in the development of high-performance technical textiles.


2017 ◽  
Vol 25 (0) ◽  
pp. 24-29
Author(s):  
Daiva Mikučioniené ◽  
Lina Čepukonė

Natural and man-made fibres of natural origin are more and more widely used, while consideration of sustainability is constantly increasing. The properties and processing behaviour of newly introduced fibres of natural origin are usually compared and often predicted on the basis of widely investigated fibres; however, this prediction sometimes does not have any confirmed basis. Structural parameters and the majority of mechanical and physical properties of knitted fabrics depend on technical characteristics of the knitting machine, on the properties of yarns as well as on the origin of the raw material. This study attempts to develop knits from new natural peat fibres and their combination with widely used woollen, cotton and elastomeric Lycra yarns and to investigate the influence of peat fibre’s nature on structural parameters such as loop length, wale and course spacing, area density, the tightness factor and on main physical properties such as dimensional stability, air permeability and water adsorption.


Sign in / Sign up

Export Citation Format

Share Document