scholarly journals Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly

Gut Microbes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 1-19
Author(s):  
Teresa Tavella ◽  
Simone Rampelli ◽  
Giulia Guidarelli ◽  
Alberto Bazzocchi ◽  
Chiara Gasperini ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Sergio De los Santos ◽  
Luis Antonio Reyes-Castro ◽  
Ramón Mauricio Coral-Vázquez ◽  
Juan Pablo Méndez ◽  
Marcela Leal-García ◽  
...  

AbstractObjective:To determine whether (-)-epicatechin (Epi) could decrease visceral adipose tissue and improve the metabolic profile of male offspring rats, after maternal obesity was induced by a high-fat diet (HFD).Design:Maternal obesity in albino Wistar rats was induced with a HFD, whereas male offspring were fed with chow diet throughout the study. Eight male offspring per group, from different litters, were randomly assigned to the experimental or to the control groups. In the experimental group, Epi was administered at a dose of 1 mg/kg of body weight to the male offspring twice daily for two weeks, beginning at postnatal day (PND).Main measures:Weight of visceral adipose tissue, adipocyte size, and several metabolic parameters.Results:Epi administration in the male offspring induced a significant decrease in the amount of visceral fat (11.61 g less, P < 0.05) and in the size of adipose cells (28% smaller, P < 0.01). Besides, Epi was able to decrease insulin, leptin, and Homeostasis Model Assessment -Insulin Resistance (HOMA-IR) (P < 0.05), as well as triglycerides, when the experimental group was compared to the untreated male offspring of obese rats (P < 0.01).Conclusions:Epi administration can reverse the negative effects that maternal obesity has on the male offspring. This could be because Epi reduces the amount of visceral fat and improves metabolic profile.


2007 ◽  
Vol 32 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Kathleen P. McMillan ◽  
Jennifer L. Kuk ◽  
Timothy S. Church ◽  
Steven N. Blair ◽  
Robert Ross

The independent associations between liver fat, visceral adipose tissue (AT), and metabolic risk factors are unclear. Although it has been reported that visceral AT is the strongest predictor of metabolic risk, liver fat has also been reported as a strong independent associate of a deleterious metabolic profile. We examined the independent associations between liver fat, visceral AT, and metabolic risk factors in a sample of 293 men varying widely in adiposity. Liver fat and abdominal AT were measured by computed tomography (CT). Univariate analysis revealed that liver fat was associated (p < 0.05) with triglycerides (TG), systolic blood pressure (SBP), and total cholesterol (TC), but not with glucose or high-density lipoprotein cholesterol (HDLC). Liver fat remained a significant correlate (p < 0.05) of TG and TC after control for age and subcutaneous AT or cardiorespiratory fitness (CRF), but not after adjustment for visceral AT alone. Conversely, visceral AT remained significantly associated with TG, SBP, glucose, HDLC (p < 0.01), and TC (p = 0.05) independent of liver fat, subcutaneous AT, CRF, and age. Both liver fat and visceral AT were associated with metabolic risk in men. However, when controlled for each other, visceral AT was the only independent associate of metabolic risk.


Author(s):  
Ifeanyi O. Oshim ◽  
Nneka R. Agbakoba ◽  
Evelyn U. Urama ◽  
Oluwayemisi Odeyemi ◽  
Nkechi A. Olise ◽  
...  

Microbiome that reside in the human gut are key contributors to host metabolism and are considered potential sources of novel therapeutics in metabolic disorders. This review discusses the role of gut microbiome in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), chronic kidney disease and cardiovascular disease. Gut microbiome remains quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understanding these changes is important to predict diseases and develop therapies. In gut heamostasis, Gut microbiome converts high fibres intake into short-chain fatty acids like butyrate, propionate and acetate which normalize intestinal permeability and alter de novo lipogenesis and gluconeogenesis through reduction of free fatty acid production by visceral adipose tissue. This effect contributes to reduce food intake and to improve glucose metabolism. Propionate can also bind to G protein coupled receptors (GPR)-43 expressed on lymphocytes in order to maintain appropriate immune defence. Butyrate activates peroxisome proliferator-activated receptor-γ (PPAR-γ) leading to beta-oxidation and oxygen consumption, a phenomenon contributing to maintain anaerobic condition in the gut lumen. In contrast, diets most especially western diet consisting among others of high fat and high salt content has been reported to cause gut dysbiosis. This alteration of gut microbiome result to chronic bacterial translocation and increased intestinal permeability that can drive a systemic inflammation leading to macrophage influx into visceral adipose tissue, activation of hepatic kuffer cells and insulin resistance in type 2 diabetes. This effect contributes to lower mucus thickness, decrease butyrate and propionate producing bacteria, L-cells secrete less gut peptides, lack of PPAR-γ activation lead to higher oxygen available for the microbiome at the proximity of the mucosa and increases the proliferation of Enterobacteriaceae with commensurate increase in opportunistic pathogens. However, Gut microbiome are major biomarker for early prognosis of diabetes and other metabolic disorders.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Simone Perna ◽  
Daniele Spadaccini ◽  
Mara Nichetti ◽  
Ilaria Avanzato ◽  
Milena Anna Faliva ◽  
...  

Background. The main criticism of the definition of “osteosarcopenic obesity” (OSO) is the lack of division between subcutaneous and visceral fat. This study describes the prevalence, metabolic profile, and risk factors of two new phenotypes of sarcopenia: osteosarcopenic visceral obesity (OSVAT) and osteosarcopenic subcutaneous obesity (OSSAT). Methods. A standardized geriatric assessment was performed by anthropometric and biochemical measures. Dual-energy X-ray absorptiometry (DXA) was used to assess body composition, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), osteoporosis, and sarcopenia. Results. A sample of 801 subjects were assessed (247 men; 554 women). The prevalence of osteosarcopenic obesity (OSO) was 6.79%; OSSAT and OSOVAT were, respectively, 2.22% and 4.56%. OSVAT (versus the others) showed a higher level of inflammation (CRP and ESR, p<0.05), bilirubin (p<0.05), and risk of fractures (FRAX index over 15%, p<0.001). Subjects with OSSAT did not show any significant risk factors associated to obesity. Conclusions. The osteosarcopenic visceral obesity phenotype (OSVAT) seems to be associated with a higher risk of fractures, inflammation, and a worse metabolic profile. These conditions in OSVAT cohort are associated with an increase of visceral adipose tissue, while patients with OSSAT seem to benefit related to the “obesity paradox.”


2001 ◽  
Vol 120 (5) ◽  
pp. A254-A254
Author(s):  
D SASS ◽  
R SCHOEN ◽  
J WEISSFELD ◽  
L KULLER ◽  
F THAETE ◽  
...  

Author(s):  
Ю.И. Шрамко ◽  
А.В. Кубышкин ◽  
А.А. Давыдова ◽  
И.И. Фомочкина ◽  
Л.Л. Алиев ◽  
...  

Цель работы состояла в изучении влияния полифенолов винограда на органы-мишени при экспериментальном метаболическом синдроме у крыс. Методы. В течение 12 недель полифенолы винограда применялись у крыс линии Вистар. Все крысы находились на стандартном рационе. Животные были разделены на 6 групп: 1-я контрольная получала питьевую воду; 2-я контрольная и все 4 экспериментальные - 2,5% раствор фруктозы в качестве питья. 1-я экспериментальная группа дополнительно получала препарат «Фэнокор» с суммарным содержанием полифенолов 181,53 г/дм, 2-я экспериментальная - виноматериал с суммарным содержанием полифенолов 1,73 г/дм; 3-я экспериментальная - виноматериал с суммарным содержанием полифенолов 4,33 г/дм и 4-я экспериментальная - виноматериал с суммарным содержанием полифенолов 8,58 г/дм. После окончания опыта у крыс проводили морфологические исследования висцеральной жировой ткани, тканей миокарда и печени. Результаты. Анализ результатов показал, что применение полифенольных продуктов переработки винограда в концентрациях 181,53 г/дм при моделировании метаболического синдрома приводило к минимизации морфофункциональных нарушений в висцеральной жировой ткани (уменьшение интенсивности лимфоплазмоцитарной инфильтрации), миокарде (мышечные волокна имели типичное строение и адипоциты между ними встречались лишь очагово) и печени (имелись лишь слабые очаговые дистрофические изменения гепатоцитов). Заключение. Результаты работы свидетельствуют о возможности применения виноматериалов с наибольшей концентрацией полифенолов и препарата «Фэнокор» в коррекции и профилактике поражений при метаболическом синдроме. The aim of this work was to study the effect of grape polyphenols on target organs in rats with experimental metabolic syndrome. Methods. Grape polyphenols were used in Wistar rats for 12 weeks. All rats received a standard diet. The animals were divided into 6 groups: group 1, control, received drinking water; group 2, the second control, and four experimental groups received a 2.5% fructose solution for drinking. The first experimental group additionally received a drug, Fenocor, containing polyphenols at 181.53 g/dm; the second experimental group - wine material containing polyphenols at 1,73 g/dm; the third experimental group - wine material containing polyphenols at 4,33 g/dm; and the fourth experimental group - wine material containing polyphenols at 8,58 g/dm. At the end of experiment, morphological studies of visceral adipose tissue, myocardial tissue, and hepatic tissue were performed. Results. The treatment of rats with experimental metabolic syndrome with grape polyphenolic products at a concentration of 181.53 g/dm minimized morphological and functional disorders in visceral adipose tissue (intensity of lymphoplasmocytic infiltration was decreased), myocardium (muscle fibers had normal structure with only occasional adipocytes between them), and liver (only slight focal degenerative changes were observed in hepatocytes). Conclusion. The study indicated a possibility of using wine materials with the highest concentration of polyphenols and the drug Fenocor for correction and prevention of damages in metabolic syndrome.


Sign in / Sign up

Export Citation Format

Share Document