Probabilistic analysis of the crack spacing in reinforced concrete members under tensile loads – numerical investigation of size effects

Author(s):  
David E.-M. Bouhjiti ◽  
Noam Demri ◽  
Miquel Huguet-Aguilera ◽  
Silvano Erlicher ◽  
Julien Baroth
1983 ◽  
Vol 10 (4) ◽  
pp. 566-581 ◽  
Author(s):  
S. H. Rizkalla ◽  
L. S. Hwang ◽  
M. El Shahawi

Two extensive and independent experimental programs have been conducted to study the cracking behaviour of reinforced concrete members subjected to pure tension in the presence of transverse reinforcement. The first program involved the testing of eighteen reinforced concrete segments and was mainly designed to examine the applicability of the existing equations for predicting crack spacings and widths. The segments were reinforced in two directions and loaded in uniaxial tension beyond the yield stress of the steel. The measured average values of the final crack spacings were compared to the values presented by other researchers. Based on this comparison, a simplified and refined expression for prediction of crack spacing is proposed.The second experimental program involved the testing of sixteen reinforced concrete segments, which were divided into two groups with different concrete covers. Within each group, all segments were identical in all parameters, except the spacing of transverse reinforcement. The program was designed to study the influence of transverse reinforcement spacing on crack behaviour. A methodology including proposed expression for predicting the crack spacing in reinforced concrete members subjected to axial tension with variable transverse reinforcement spacing is presented. Keywords: cracking, crack spacing, crack width, membrane forces, reinforced concrete, tension, transverse reinforcement.


2012 ◽  
Vol 166-169 ◽  
pp. 1793-1796
Author(s):  
Fan Feng ◽  
Jun Zhao ◽  
Aizhen Lu

The size effects of reinforced concrete members with eccentrical compression are experimentally studied, using two sizes of specimens which side lengths of cross-section are 200mm and 400mm, respectively, under the conditions in which e0/h0=0.6. It shows that, with the increase of the size of the specimen, the ultimate load capacity of the specimen decreases, relative to the calculated values; cross-sectional strain distribution of smaller specimens matches plane-section assumption better than larger-sized specimen’s.


1997 ◽  
Vol 62 (2) ◽  
pp. 339-352 ◽  
Author(s):  
M.A. Shayanfar ◽  
A. Kheyroddin ◽  
M.S. Mirza

2012 ◽  
Vol 455-456 ◽  
pp. 1079-1083
Author(s):  
Wei Jun Yang ◽  
Hong Jia Huang ◽  
Wen Yu Jiang ◽  
Yi Bin Peng

Shantou atmospheric salt-fog environment is simulated with the comprehensive salt spray test chamber. By using reinforced concrete short beams under different water-cement radio, different corrosion time, the inclined section degradation rules of the corrosive reinforced concrete members are researched for establishing shear capacity of short beam formulas in salt-fog environment.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


Sign in / Sign up

Export Citation Format

Share Document