scholarly journals The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action

Adipocyte ◽  
2018 ◽  
pp. 1-7 ◽  
Author(s):  
Habtamu Wondifraw Baynes ◽  
Seifu Mideksa ◽  
Sintayehu Ambachew
2014 ◽  
Vol 224 (3) ◽  
pp. R97-R106 ◽  
Author(s):  
Xiaofeng Wang ◽  
Catherine B Chan

n-3 polyunsaturated fatty acids (PUFAs) are a subgroup of fatty acids with broad health benefits, such as lowering blood triglycerides and decreasing the risk of some types of cancer. A beneficial effect of n-3 PUFAs in diabetes is indicated by results from some studies. Defective insulin secretion is a fundamental pathophysiological change in both types 1 and 2 diabetes. Emerging studies have provided evidence of a connection between n-3 PUFAs and improved insulin secretion from pancreatic β-cells. This review summarizes the recent findings in this regard and discusses the potential mechanisms by which n-3 PUFAs influence insulin secretion from pancreatic β-cells.


2010 ◽  
Vol 31 (3) ◽  
pp. 343-363 ◽  
Author(s):  
Oliver C. Richards ◽  
Summer M. Raines ◽  
Alan D. Attie

The pathogenesis of type 2 diabetes is intimately intertwined with the vasculature. Insulin must efficiently enter the bloodstream from pancreatic β-cells, circulate throughout the body, and efficiently exit the bloodstream to reach target tissues and mediate its effects. Defects in the vasculature of pancreatic islets can lead to diabetic phenotypes. Similarly, insulin resistance is accompanied by defects in the vasculature of skeletal muscle, which ultimately reduce the ability of insulin and nutrients to reach myocytes. An underappreciated participant in these processes is the vascular pericyte. Pericytes, the smooth muscle-like cells lining the outsides of blood vessels throughout the body, have not been directly implicated in insulin secretion or peripheral insulin delivery. Here, we review the role of the vasculature in insulin secretion, islet function, and peripheral insulin delivery, and highlight a potential role for the vascular pericyte in these processes.


2021 ◽  
Vol 22 (9) ◽  
pp. 4356
Author(s):  
Eva Knuplez ◽  
Eva Maria Sturm ◽  
Gunther Marsche

Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and ‘pro-inflammatory’ phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.


Author(s):  
Shinya Nagamatsu ◽  
Hiroki Sawa ◽  
Yoko Nakamichi ◽  
Yoshinori Kondo ◽  
Satsuki Matsushima ◽  
...  

Autoimmunity ◽  
1992 ◽  
Vol 12 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Décio L. Eizirik ◽  
Daniel E. Tracey ◽  
Klaus Bendtzen ◽  
Stellan Sandler

2016 ◽  
Vol 9 ◽  
pp. NMI.S39043 ◽  
Author(s):  
Salma A. Abdelmagid ◽  
Jessica L. MacKinnon ◽  
Sarah M. Janssen ◽  
David W.L. Ma

Diet and exercise are recognized as important lifestyle factors that significantly influence breast cancer risk. In particular, dietary n-3 polyunsaturated fatty acids (PUFAs) have been shown to play an important role in breast cancer prevention. Growing evidence also demonstrates a role for exercise in cancer and chronic disease prevention. However, the potential synergistic effect of n-3 PUFA intake and exercise is yet to be determined. This review explores targets for breast cancer prevention that are common between n-3 PUFA intake and exercise and that may be important study outcomes for future research investigating the combined effect of n-3 PUFA intake and exercise. These lines of evidence highlight potential new avenues for research and strategies for breast cancer prevention.


Sign in / Sign up

Export Citation Format

Share Document