scholarly journals Mechanisms of Dendrobium officinale polysaccharides in repairing gastric mucosal injuries based on mitogen-activated protein kinases (MAPK) signaling pathway

Bioengineered ◽  
2021 ◽  
Author(s):  
Sibu Ma ◽  
Qiong Wu ◽  
Zelin Zhao ◽  
Jiangyan Xiong ◽  
Jianjun Niu ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 163-168
Author(s):  
Sheng Wang ◽  
Zhonghan Min ◽  
Run Gu ◽  
Zhongwei Yu ◽  
Pingquan Chen ◽  
...  

During OP bone metabolism, activated MAPK signaling can promote the proliferation and differentiation of osteoclasts. miRNAs involve in bone diseases. Our study aimed to evaluate miR-200c’s effect on ERK/MAPK signaling pathway in OP. miR-200c expression in OP mice and normal mice was detected by qPCR. BMSCs were cultured and transfected with siRNA to establish a miR-200c knockout model. Flow cytometry was used to detect cell apoptosis and ERK/MAPK signaling protein was detected by Western blot. miR-200c expression in OP mice was significantly lower than that in normal mice. Bone marrow mesenchymal stem cells (BMSCs) contain a large amount of siRNA particles under a fluorescence microscope. siRNA transfection can effectively inhibit miR-200c expression without difference of BMSCs apoptosis between miR-200c siRNA group and NC group. However, ERK1/2 and P38 expression in experimental group were significantly higher than those in NC siRNA group with reduced ALP activity. In addition, BMSCs osteogenic differentiation was further diminished when miR-200c expression was inhibited. miR-200c expression is lower in OP mice. miR-200c siRNA inhibits BMSCs osteogenic differentiation via ERK/MAPK signaling, thereby promoting OP progression.


2019 ◽  
Author(s):  
Yeojin Hong ◽  
Thu Thao Pham ◽  
Jiae Lee ◽  
Hyun S. Lillehoj ◽  
Yeong Ho Hong

Abstract Background Defensins are antimicrobial peptides composed of three conserved disulfide bridges, a β-sheet, and both hydrophobic and cationic amino acids. In this study, we aimed to demonstrate the immunomodulation role of avian β-defensin 8 (AvBD8) in a chicken macrophage cell line.Results Chicken AvBD8 stimulated the expression of proinflammatory cytokines (interleukin (IL)-1β, interferon-γ, and IL-12p40) and chemokines (CCL4, CXCL13, and CCL20) in macrophages. Furthermore, by western blotting and immunocytochemistry, we confirmed that AvBD8 activated the mitogen-activated protein kinase (MAPK) signaling pathway via extracellular regulated kinases 1/2 (ERK1/2) and p38 signaling molecules.Conclusion Overall, AvBD8 plays a crucial role in host defense as not only an antimicrobial peptide, but also an immunomodulator by activating the MAPK signaling pathway and inducing the expression of proinflammatory cytokines and chemokines.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Zhong Zheng ◽  
Xinyi Zheng ◽  
Yiwen Zhu ◽  
Zhixian Yao ◽  
Weiguang Zhao ◽  
...  

Muscle-invasive bladder cancer (MIBC) is characterized by a highly complex immune environment, which is not well understood. Interleukin-6 (IL-6) is generated and secreted by multifarious types of cells, including tumor cells. This study was aimed at demonstrating that the levels of IL-6 and the number of myeloid-derived suppressor cells (MDSCs), with a positive correlation between them, increased in MIBC tissues, promoting MIBC cell proliferation, especially in patients with recurrence. In coculture analysis, MDSCs, with the stimulation of IL-6, could significantly lower the proliferation ability of CD4+ or CD8+ T lymphocytes. Further, this study demonstrated that IL-6 could upregulate the mitogen-activated protein kinase (MAPK) signaling pathway in MDSCs. The MAPK signaling inhibitor, aloesin, partially reversed the effects of IL-6 on MDSCs. These data suggested that IL-6 promoted MIBC progression by not only accelerating proliferation but also improving the immune suppression ability of MDSCs through activating the MAPK signaling pathway.


Blood ◽  
2009 ◽  
Vol 113 (4) ◽  
pp. 893-901 ◽  
Author(s):  
Panagiotis Flevaris ◽  
Zhenyu Li ◽  
Guoying Zhang ◽  
Yi Zheng ◽  
Junling Liu ◽  
...  

Abstract Mitogen-activated protein kinases (MAPK), p38, and extracellular stimuli-responsive kinase (ERK), are acutely but transiently activated in platelets by platelet agonists, and the agonist-induced platelet MAPK activation is inhibited by ligand binding to the integrin αIIbβ3. Here we show that, although the activation of MAPK, as indicated by MAPK phosphorylation, is initially inhibited after ligand binding to integrin αIIbβ3, integrin outside-insignaling results in a late but sustained activation of MAPKs in platelets. Furthermore, we show that the early agonist-induced MAPK activation and the late integrin-mediated MAPK activation play distinct roles in different stages of platelet activation. Agonist-induced MAPK activation primarily plays an important role in stimulating secretion of platelet granules, while integrin-mediated MAPK activation is important in facilitating clot retraction. The stimulatory role of MAPK in clot retraction is mediated by stimulating myosin light chain (MLC) phosphorylation. Importantly, integrin-dependent MAPK activation, MAPK-dependent MLC phosphorylation, and clot retraction are inhibited by a Rac1 inhibitor and in Rac1 knockout platelets, indicating that integrin-induced activation of MAPK and MLC and subsequent clot retraction is Rac1-dependent. Thus, our results reveal 2 different activation mechanisms of MAPKs that are involved in distinct aspects of platelet function and a novel Rac1-MAPK–dependent cell retractile signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document