A Double Divisor Ratio-Spectra Derivative Method for the Ternary Mixture of Aspirin, Clopidogrel Bisulphate and Rosuvastatin Calcium

2021 ◽  
Vol 11 (5) ◽  
pp. 696-707
Author(s):  
Swati Pandey ◽  
Neeraj Kumar Karmakar ◽  
Ravindra Kumar Pandey ◽  
Shiv Shankar Shukla
2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Reza Hajian ◽  
Ahmad Soltaninezhad

Double divisor-ratio spectra derivative method based on the spectrophotometric data was developed for the simultaneous analysis of a ternary mixture containing paracetamol, aspirin, and caffeine, without prior separation. This method is based on the use of the derivative of the ratio spectrum obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of a mixture of two of the three compounds in the title mixture. The concentrations of three compounds in their mixture are determined by using their respective calibration graphs which are obtained by measuring the amplitude at either the maximum or minimum wavelengths selected. The selected wavelengths for determination of aspirin, caffeine, and paracetamol are 241.5, 256, and 258.5 nm, respectively. All of the solutions adjusted to pH 11 before recording the spectra in the range of 220 to 320 nm. Also, the mathematical explanation of the procedure is illustrated. The method was applied for the assay of Excedrin containing paracetamol, aspirin, and caffeine.


1966 ◽  
Vol 53 (2) ◽  
pp. 177-188 ◽  
Author(s):  
P. Lund-Johansen ◽  
T. Thorsen ◽  
K. F. Støa

ABSTRACT A comparison has been made between (A), a relatively simple method for the measurement of aldosterone secretion rate, based on paper chromatography and direct densitometry of the aldosterone spot and (B) a more elaborate isotope derivative method. The mean secretion rate in 9 normal subjects was 112 ± 26 μg per 24 hours (method A) and 135 ± 35 μg per 24 hours (method B). The »secretion rate« in one adrenalectomized subject after the intravenous injection of 250 μg of aldosterone was 230 μg per 24 hours (method A) and 294 μg per 24 hours (method B). There was no significant difference in the mean values, and correlation between the two methods was good (r = 0.80). It is concluded that the densitometric method is suitable for clinical purposes as well as research, being more rapid and less expensive than the isotope derivative method. Method A also measures the urinary excretion of the aldosterone 3-oxo-conjugate, which is of interest in many pathological conditions. The densitometric method is obviously the less sensitive and a prerequisite for its use is an aldosterone secretion of 20—30 μg per 24 hours. Lower values are, however, rare in adults.


2003 ◽  
Vol 23 (Supplement1) ◽  
pp. 21-24
Author(s):  
Yasufumi YAMAMOTO ◽  
Yuya AKAMATSU ◽  
Noriyoshi YONEHARA ◽  
Tomomasa UEMURA

2007 ◽  
Vol 90 (2) ◽  
pp. 391-404 ◽  
Author(s):  
Fadia H Metwally ◽  
Yasser S El-Saharty ◽  
Mohamed Refaat ◽  
Sonia Z El-Khateeb

Abstract New selective, precise, and accurate methods are described for the determination of a ternary mixture containing drotaverine hydrochloride (I), caffeine (II), and paracetamol (III). The first method uses the first (D1) and third (D3) derivative spectrophotometry at 331 and 315 nm for the determination of (I) and (III), respectively, without interference from (II). The second method depends on the simultaneous use of the first derivative of the ratio spectra (DD1) with measurement at 312.4 nm for determination of (I) using the spectrum of 40 μg/mL (III) as a divisor or measurement at 286.4 and 304 nm after using the spectrum of 4 μg/mL (I) as a divisor for the determination of (II) and (III), respectively. In the third method, the predictive abilities of the classical least-squares, principal component regression, and partial least-squares were examined for the simultaneous determination of the ternary mixture. The last method depends on thin-layer chromatography-densitometry after separation of the mixture on silica gel plates using ethyl acetatechloroformmethanol (16 + 3 + 1, v/v/v) as the mobile phase. The spots were scanned at 281, 272, and 248 nm for the determination of (I), (II), and (III), respectively. Regression analysis showed good correlation in the selected ranges with excellent percentage recoveries. The chemical variables affecting the analytical performance of the methodology were studied and optimized. The methods showed no significant interferences from excipients. Intraday and interday assay precision and accuracy values were within regulatory limits. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed methods was further assessed by applying a standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.


Sign in / Sign up

Export Citation Format

Share Document