scholarly journals Energy and economic evaluation of three generations of anaerobic reactors for starch wastewater treatment

2019 ◽  
Vol 31 (1) ◽  
pp. 252-260 ◽  
Author(s):  
Huihui He ◽  
Xiaowen Ji ◽  
Xianchuan Xie ◽  
Xinchun Ding ◽  
Fang Wang ◽  
...  
Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1546
Author(s):  
Monika Vítězová ◽  
Anna Kohoutová ◽  
Tomáš Vítěz ◽  
Nikola Hanišáková ◽  
Ivan Kushkevych

Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus sp., Methanobacterium sp. and Methanospirillum sp. prevailed in this group. This work summarizes the relation of industrial wastewater composition and methanogen microbial communities present in different reactors treating these wastewaters.


2019 ◽  
Vol 5 (1) ◽  
pp. 70-82 ◽  
Author(s):  
Evangelos Petropoulos ◽  
Yongjie Yu ◽  
Shamas Tabraiz ◽  
Aminu Yakubu ◽  
Thomas P. Curtis ◽  
...  

To choose the reactor format in which to employ a low temperature adapted seed for wastewater treatment, we compared a UASB and an AnMBRUASB (UF)reactor at low HRT and temperature (15 °C).


Author(s):  
Biao HAN ◽  
Chun-li JIANG ◽  
Wei ZHAO ◽  
Wei-wei ZHANG ◽  
Jun-he HE

1985 ◽  
Vol 17 (11-12) ◽  
pp. 287-288 ◽  
Author(s):  
R. Ramadori ◽  
V. Tandoi ◽  
A. Misiti

In connection with studies aimed at developing low-energy wastewater treatment processes considerable interest has been shown in the possibility of removal of phosphorus biologically rather than chemically. The results over one year from bench and pilot scale tests conducted with synthetic and settled domestic wastewaters respectively are reported. The pilot plant was installed in one of the Rome urban wastewater treatment works and consisted of a two stage (anaerobic-aerobic) system. The wastewater was withdrawn downstream from the primary settling tank and conveyed to the anaerobic reactor of the pilot plant. A similar experiment was conducted in a three reactor (two anaerobic and one aerobic) bench scale plant, where a synthetic solution (peptone, sodium acetate and potassium phosphate) was fed under rigorously controlled conditions of temperature, pH and dissolved oxygen. Both bench and pilot scale tests were designed to verify and quantify the biological removal of phosphorus; the performances of both phosphorus removal test scale systems were compared with those from a reference aerobic plant operating under the same conditions. The impact of several parameters on the biological removal of phosphorus were examined. These parameters were: nature of carbonaceous substrate, carbonaceous/phosphorus ratio, sludge age; etc. Considerable care and attention was given to checking phosphorus balances, once the steady state conditions had been obtained. The results can be summarized as follows:-Phosphorus removal was found to be greater in plants with an anaerobic stage than in the reference plants. At pilot scale level this is clearly shown by the plot of the daily phosphate concentration in the effluents. At bench scale it is shown by comparison between P contents in sludges (9.9% vs. 5.0%) and by the fact that, at the end of the experiment, large deposits of inorganic phosphate (mainly of Ca and Mg) were found on the walls of both anaerobic reactors. The unstable operating conditions of the reference plant due to the poor sedimentation characteristics of the sludges leading to uncontrolled losses of biomass meant it was impossible to obtain a reliable mean phosphorus abatement value, which in any case was always well below that found for the P-removal plant.-As reported above, the deficit in the phosphorus balance was due to inorganic phosphate precipitation. In this connection an excellent quantitative agreement was found between the deficit in the balance and the quantity of phosphorus collecting in the anaerobic reactors.-Phosphorus release from the biomass under anaerobic conditions has already been completed in the first anaerobic reactor (where carbonaceous substrate uptake also occurs) and the use of the second anaerobic reactor seems to allow a more complete phosphate precipitation.-Part of the carbonaceous substrate which disappears during the first anaerobic stage is metabolized. In fact, in this reactor, the complete disappearance of organic nitrogen is accompanied by the release of large quantities of ammoniacal nitrogen. Lastly, despite the fact that the values of the main operative parameters, such as hydraulic retention time, sludge age, temperature, pH and dissolved oxygen, were kept rigorously constant, a certain instability was found in the biomass as regards the maintaining of such high phosphorus removal efficiencies over long periods of time. This may be due to the highly variable biological population dynamics.


2000 ◽  
Vol 23 (7) ◽  
pp. 1089-1097 ◽  
Author(s):  
Quezia Bezerra Cass ◽  
Luciana Gomide Freitas ◽  
Eugênio Foresti ◽  
Márcia H. R. Zamariolli Damianovic

2007 ◽  
Vol 56 (10) ◽  
pp. 45-53 ◽  
Author(s):  
P. Pavan ◽  
D. Bolzonella ◽  
E. Battistoni ◽  
F. Cecchi

This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000–30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range €69–105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range €36–54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be €23–25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.


Sign in / Sign up

Export Citation Format

Share Document