scholarly journals Mutants of the membrane-binding region of Semliki Forest virus E2 protein. II. Topology and membrane binding.

1986 ◽  
Vol 102 (3) ◽  
pp. 902-910 ◽  
Author(s):  
D F Cutler ◽  
P Melancon ◽  
H Garoff

The p62/E2 protein of Semliki Forest virus (SFV) is a typical transmembrane glycoprotein, with an amino-terminal lumenal domain, a transmembrane (hydrophobic) domain, and a carboxy-terminal cytoplasmic domain (or tail). Our hypothesis has been that the membrane-binding polypeptide region (membrane anchor) of this protein consists of both the transmembrane domain and the adjacent positively charged peptide, Arg-Ser-Lys, which is part of the cytoplasmic domain. We have investigated three anchor mutants of the p62 protein with respect to both their disposition and their stability in cell membranes. The construction of the three mutants has been described (Cutler, D.F., and H. Garoff, J. Cell Biol., 102:889-901). They are as follows: A1, changing the basic charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Glu(-1); A2, replacing an Ala in the middle of the hydrophobic stretch with a Glu; A3, changing the charge cluster from Arg-Ser-Lys(+2) to Gly-Ser-Met(0). All three mutants retain the transmembrane configuration of the wild-type p62. In a cell homogenate they have a cytoplasmic domain that is accessible to protease. In living cells an anti-peptide antibody specific for the cytoplasmic tail of p62 reacts with the tails of both wild-type and mutant p62s following its introduction into the cytoplasm. All three mutant proteins have Triton X-114 binding properties similar to the wild-type p62. However, when the membranes of cells expressing the three mutants or the wild-type p62 protein are washed with sodium carbonate, pH 11.5, three to four times as much mutant protein as wild-type p62 is released from the membranes. Thus the stability in cell membranes of the three mutant p62 proteins is significantly reduced.

1986 ◽  
Vol 102 (3) ◽  
pp. 889-901 ◽  
Author(s):  
D F Cutler ◽  
H Garoff

Three mutations of the membrane-binding region of the Semliki Forest virus (SFV) p62 polypeptide (the precursor for virion E3 and E2) have been made by oligonucleotide-directed mutagenesis of a cDNA clone encoding the SFV structural proteins. One of the mutations (A2) substitutes a Glu for an Ala in the middle of the hydrophobic stretch which spans the bilayer. A1 and A3 alter the two basic charged amino acids in the cytoplasmic domain next to the hydrophobic region. The wild-type charge cluster of Arg-Ser-Lys (+2) has been changed to Gly-Ser-Met (0;A3) or to Gly-Ser-Glu (-1;A1). The mutant p62 proteins have been analyzed both in the presence and the absence of E1, the other half of the heterodimer spike complex of SFV. The mutant proteins expressed in COS-7 cells are glycosylated and are of the expected sizes. When co-expressed with E1, all three mutants are cleaved to yield the E2 protein and transported to the surface of COS-7 cells. When expressed in the absence of E1, the mutant p62 proteins remain uncleaved but still reach the cell surface. Once at the cell surface, all three mutants, when co-expressed with E1, can promote low pH-triggered cell-cell fusion. These results show that the three mutant p62/E2 proteins are still membrane associated in a functionally unaltered way.


1995 ◽  
Vol 15 (9) ◽  
pp. 5043-5053 ◽  
Author(s):  
A S Ho ◽  
S H Wei ◽  
A L Mui ◽  
A Miyajima ◽  
K W Moore

The functions of wild-type and mutant mouse interleukin-10 receptors (mIL-10R) expressed in murine Ba/F3 cells were studied. As observed previously, IL-10 stimulates proliferation of IL-10R-expressing Ba/F3 cells. Accumulation of viable cells in the proliferation assay is to a significant extent balanced by concomitant cell death. Moreover, growth in IL-10 also induces a previously unrecognized response, differentiation of the cells, as evidenced both by formation of large clusters of cells in cultures with IL-10 and by induction or enhancement of expression of several cell surface antigens, including CD32/16, CD2, LECAM-1 (v-selectin), and heat-stable antigen. Two distinct functional regions near the C terminus of the mIL-10R cytoplasmic domain which mediate proliferation were identified; one of these regions also mediates the differentiation response. A third region proximal to the transmembrane domain was identified; removal of this region renders the cell 10- to 100-fold more sensitive to IL-10 in the proliferation assay. In cells expressing both wild-type and mutant IL-10R, stimulation with IL-10 leads to tyrosine phosphorylation of the kinases JAK1 and TYK2 but not JAK2 or JAK3 under the conditions tested.


1990 ◽  
Vol 10 (2) ◽  
pp. 449-457
Author(s):  
C Wilson ◽  
R Gilmore ◽  
T Morrison

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a type II glycoprotein oriented in the plasma membrane with its amino terminus in the cytoplasm and its carboxy terminus external to the cell. We have previously shown that the membrane insertion of HN protein requires signal recognition particle SRP, occurs cotranslationally, and utilizes the same GTP-dependent step that has been described for secretory proteins, type I proteins, and multispanning proteins (C. Wilson, R. Gilmore, and T. Morrison, Mol. Cell. Biol. 7:1386-1392, 1987; C. Wilson, T. Connolly, T. Morrison, and R. Gilmore, J. Cell Biol. 107:69-77, 1988). The role of the amino-terminal cytoplasmic domain in the faithful membrane insertion of this type II protein was explored by characterizing the membrane integration of a mutant lacking 23 of the 26 amino acids of the cytoplasmic domain. The mutant protein was able to interact with SRP, resulting in translation inhibition, membrane targeting, and membrane translocation, but the efficiency of translocation was considerably lower than for the wild-type HN protein. In addition, a significant proportion of the mutant protein synthesized in the presence of SRP and microsomal membranes was associated with the membrane in an EDTA- and alkali-insensitive manner yet integrated into membranes with its carboxy-terminal domain on the cytoplasmic side of membrane vesicles. Membrane-integrated molecules with this reverse orientation were not detected when the mutant protein was synthesized in the absence of SRP or a functional SRP receptor. Truncated mRNAs encoding amino-terminal segments of the wild-type and mutant proteins were translated to prepare ribosomes bearing arrested nascent chains. The arrested mutant nascent chain, in contrast to the wild-type nascent chain, was also able to insert into membranes in a GTP- and SRP-independent manner. Results suggest that the cytoplasmic domain plays a role in the proper membrane insertion of this type II glycoprotein.


2007 ◽  
Vol 189 (7) ◽  
pp. 2825-2833 ◽  
Author(s):  
Ray A. Larsen ◽  
Gail E. Deckert ◽  
Kyle A. Kastead ◽  
Surendranathan Devanathan ◽  
Kimberly L. Keller ◽  
...  

ABSTRACT The cytoplasmic membrane protein TonB couples the protonmotive force of the cytoplasmic membrane to active transport across the outer membrane of Escherichia coli. The uncleaved amino-terminal signal anchor transmembrane domain (TMD; residues 12 to 32) of TonB and the integral cytoplasmic membrane proteins ExbB and ExbD are essential to this process, with important interactions occurring among the several TMDs of all three proteins. Here, we show that, of all the residues in the TonB TMD, only His20 is essential for TonB activity. When alanyl residues replaced all TMD residues except Ser16 and His20, the resultant “all-Ala Ser16 His20” TMD TonB retained 90% of wild-type iron transport activity. Ser16Ala in the context of a wild-type TonB TMD was fully active. In contrast, His20Ala in the wild-type TMD was entirely inactive. In more mechanistically informative assays, the all-Ala Ser16 His20 TMD TonB unexpectedly failed to support formation of disulfide-linked dimers by TonB derivatives bearing Cys substitutions for the aromatic residues in the carboxy terminus. We hypothesize that, because ExbB/D apparently cannot efficiently down-regulate conformational changes at the TonB carboxy terminus through the all-Ala Ser16 His20 TMD, the TonB carboxy terminus might fold so rapidly that disulfide-linked dimers cannot be efficiently trapped. In formaldehyde cross-linking experiments, the all-Ala Ser16 His20 TMD also supported large numbers of apparently nonspecific contacts with unknown proteins. The all-Ala Ser16 His20 TMD TonB retained its dependence on ExbB/D. Together, these results suggest that a role for ExbB/D might be to control rapid and nonspecific folding that the unregulated TonB carboxy terminus otherwise undergoes. Such a model helps to reconcile the crystal/nuclear magnetic resonance structures of the TonB carboxy terminus with conformational changes and mutant phenotypes observed at the TonB carboxy terminus in vivo.


1986 ◽  
Vol 103 (6) ◽  
pp. 2607-2618 ◽  
Author(s):  
L M Roman ◽  
H Garoff

Expression of the Semliki Forest virus p62/E2 protein was studied in the polarized epithelial cell line Madin-Darby canine kidney (MDCK). After infection this transmembrane protein, together with the other spike subunit E1, accumulates at the basolateral surface of MDCK cells (Fuller, S. D., C.-H. von Bonsdorff, and K. Simons, 1985, EMBO (Eur. Mol. Biol. Organ.) J., 4:2475-2485). The cDNAs encoding truncated forms of the protein were used to stably transform MDCK cells to examine the role of subunit oligomerization (E1-E2) and the cytoplasmic domain of p62/E2 in directed transport to the basolateral surface. The biochemical characteristics and polarity of the expressed proteins were studied using cell monolayers grown on nitrocellulose filters. A wild-type form of p62/E2, in the absence of E1, and two forms having either 15 or 3 of the wild-type 31-amino acid carboxyl cytoplasmic domain were all localized to the basolateral surface. These results indicate that the cytoplasmic domain of E2 does not contain the information essential for directed transport to the plasma membrane, and imply that this information resides in either the lumenal and/or membrane-spanning segments of this transmembrane protein.


1990 ◽  
Vol 10 (2) ◽  
pp. 449-457 ◽  
Author(s):  
C Wilson ◽  
R Gilmore ◽  
T Morrison

The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a type II glycoprotein oriented in the plasma membrane with its amino terminus in the cytoplasm and its carboxy terminus external to the cell. We have previously shown that the membrane insertion of HN protein requires signal recognition particle SRP, occurs cotranslationally, and utilizes the same GTP-dependent step that has been described for secretory proteins, type I proteins, and multispanning proteins (C. Wilson, R. Gilmore, and T. Morrison, Mol. Cell. Biol. 7:1386-1392, 1987; C. Wilson, T. Connolly, T. Morrison, and R. Gilmore, J. Cell Biol. 107:69-77, 1988). The role of the amino-terminal cytoplasmic domain in the faithful membrane insertion of this type II protein was explored by characterizing the membrane integration of a mutant lacking 23 of the 26 amino acids of the cytoplasmic domain. The mutant protein was able to interact with SRP, resulting in translation inhibition, membrane targeting, and membrane translocation, but the efficiency of translocation was considerably lower than for the wild-type HN protein. In addition, a significant proportion of the mutant protein synthesized in the presence of SRP and microsomal membranes was associated with the membrane in an EDTA- and alkali-insensitive manner yet integrated into membranes with its carboxy-terminal domain on the cytoplasmic side of membrane vesicles. Membrane-integrated molecules with this reverse orientation were not detected when the mutant protein was synthesized in the absence of SRP or a functional SRP receptor. Truncated mRNAs encoding amino-terminal segments of the wild-type and mutant proteins were translated to prepare ribosomes bearing arrested nascent chains. The arrested mutant nascent chain, in contrast to the wild-type nascent chain, was also able to insert into membranes in a GTP- and SRP-independent manner. Results suggest that the cytoplasmic domain plays a role in the proper membrane insertion of this type II glycoprotein.


1995 ◽  
Vol 108 (3) ◽  
pp. 1033-1041 ◽  
Author(s):  
A. Perschl ◽  
J. Lesley ◽  
N. English ◽  
R. Hyman ◽  
I.S. Trowbridge

The hyaluronan receptor CD44 is an abundant glycoprotein expressed on a variety of different cell types. In fibroblasts a significant portion of receptor molecules remain in the detergent-insoluble fraction after Triton X-100 extraction. Detergent insolubility of these CD44 molecules has been interpreted to reflect their association with the cytoskeleton. In this study we examined the structural features of CD44 required for its Triton X-100 insolubility in murine fibroblasts. We expressed in L cells the wild-type hematopoietic form of CD44, a mutant CD44 lacking the cytoplasmic domain, and two mutant CD44 molecules with substituted transmembrane domains. Immunofluorescence and cell surface iodination were performed and the detergent extraction profile of the transfected CD44 molecules was determined. No difference in detergent solubility was observed between wild-type and tailless mutant-transfected molecules. However, both CD44 mutants with a heterologous transmembrane domain, derived from either the CD3 zeta chain or CD45, were completely soluble in Triton X-100. These results demonstrate that the transmembrane region but not the cytoplasmic domain of CD44 is required for the detergent-insolubility in these cells. No obvious colocalization of CD44 and actin stress fibers was observed before or after treatment with cytochalasin D, and no change in the detergent extraction profile of wild-type and mutant CD44 molecules was effected by cytochalasin D. In equilibrium density sucrose gradients the Triton-insoluble CD44 component was found in the low density fractions, indicating an association with Triton X-100-insoluble lipids.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 97 (3) ◽  
pp. 652-658 ◽  
Author(s):  
H Garoff ◽  
C Kondor-Koch ◽  
R Pettersson ◽  
B Burke

The E2 protein (422 amino acid residues long) of Semliki Forest virus is a spanning membrane protein which is made in the rough endoplasmic reticulum of the infected cell and transported to the cell surface. The cytoplasmic domain of this protein comprises 31 amino acid residues. We introduced deletions of various sizes into the gene region encoding this part of the protein molecule and analyzed the transport behavior of the mutant proteins. The deletions were made using exonuclease digestions of cloned cDNA encoding the E2 protein. When the mutated DNA molecules, engineered into an expression vector, were introduced into nuclei of baby hamster kidney 21 cells, membrane proteins with cytoplasmic deletions were expressed and routed to the cell surface in the same way as the wild-type protein. This suggests that the cytoplasmic domain of the E2 protein does not carry information that is needed for its transport from the rough endoplasmic reticulum to the cell surface.


1998 ◽  
Vol 72 (2) ◽  
pp. 1013-1019 ◽  
Author(s):  
Jun-Mei Yao ◽  
David E. Breiding ◽  
Elliot J. Androphy

ABSTRACT Induction of gene expression by the papillomavirus E2 protein requires its ∼220-amino-acid amino-terminal transactivation domain (TAD) to interact with cellular factors that lead to formation of an activated RNA polymerase complex. These interaction partners have yet to be identified and characterized. The E2 protein localizes the transcription complex to the target promoter through its carboxy-terminal sequence-specific DNA binding domain. This domain has been reported to bind the basal transcription factors TATA-binding protein and TFIIB. We present evidence establishing a direct interaction between amino acids 74 to 134 of the E2 TAD and TFIIB. Within this region, the E2 point mutant N127Y was partially defective and W99C was completely defective for TFIIB binding in vitro, and these mutants displayed reduced or no transcriptional activity, respectively, upon transfection into C33A cells. Overexpression of TFIIB specifically restored transactivation by N127Y to close to wild-type levels, while W99C remained inactive. To further demonstrate the functional interaction of TFIIB with the wild-type E2 TAD, this region was fused to a bacterial DNA binding domain (LexA:E2:1-216). Upon transfection with increasing amounts of LexA:E2:1-216, there was reduction of its transcriptional activity, a phenomenon thought to result from titration of limiting factors, or squelching. Squelching of LexA:E2:1-216, or the wild-type E2 activator, was partially relieved by overexpression of TFIIB. We conclude that a specific region of the E2 TAD functionally interacts with TFIIB.


1999 ◽  
Vol 73 (3) ◽  
pp. 2084-2093 ◽  
Author(s):  
Michael D. Davis ◽  
Ramani S. Wonderling ◽  
Scotty L. Walker ◽  
Roland A. Owens

ABSTRACT The Rep78 and Rep68 proteins of adeno-associated virus type 2 (AAV) are multifunctional proteins which are required for viral replication, regulation of AAV promoters, and preferential integration of the AAV genome into a region of human chromosome 19. These proteins bind the hairpin structures formed by the AAV inverted terminal repeat (ITR) origins of replication, make site- and strand-specific endonuclease cuts within the AAV ITRs, and display nucleoside triphosphate-dependent helicase activities. Additionally, several mutant Rep proteins display negative dominance in helicase and/or endonuclease assays when they are mixed with wild-type Rep78 or Rep68, suggesting that multimerization may be required for the helicase and endonuclease functions. Using overlap extension PCR mutagenesis, we introduced mutations within clusters of charged residues throughout the Rep68 moiety of a maltose binding protein-Rep68 fusion protein (MBP-Rep68Δ) expressed inEscherichia coli cells. Several mutations disrupted the endonuclease and helicase activities; however, only one amino-terminal-charge cluster mutant protein (D40A-D42A-D44A) completely lost AAV hairpin DNA binding activity. Charge cluster mutations within two other regions abolished both endonuclease and helicase activities. One region contains a predicted alpha-helical structure (amino acids 371 to 393), and the other contains a putative 3,4 heptad repeat (coiled-coil) structure (amino acids 441 to 483). The defects displayed by these mutant proteins correlated with a weaker association with wild-type Rep68 protein, as measured in coimmunoprecipitation assays. These experiments suggest that these regions of the Rep molecule are involved in Rep oligomerization events critical for both helicase and endonuclease activities.


Sign in / Sign up

Export Citation Format

Share Document