scholarly journals The NH2 terminus of preproinsulin directs the translocation and glycosylation of a bacterial cytoplasmic protein by mammalian microsomal membranes.

1986 ◽  
Vol 103 (6) ◽  
pp. 2263-2272 ◽  
Author(s):  
E M Eskridge ◽  
D Shields

To investigate putative sorting domains in precursors to polypeptide hormones, we have constructed fusion proteins between the amino terminus of preproinsulin (ppI) and the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase (CAT). Our aim is to identify sequences in ppI, other than the signal peptide, that are necessary to mediate the intracellular sorting and secretion of the bacterial enzyme. Here we describe the in vitro translation of mRNAs encoding two chimeric molecules containing 71 and 38 residues, respectively, of the ppI NH2 terminus fused to the complete CAT sequence. The ppI signal peptide and 14 residues of the B-chain were sufficient to direct the translocation and segregation of CAT into microsomal membrane vesicles. Furthermore, the CAT enzyme underwent N-linked glycosylation, presumably at a single cryptic site, with an efficiency that was comparable to that of native glycoproteins synthesized in vitro. Partial amino-terminal sequencing demonstrated that the downstream sequences in the fusion proteins did not alter the specificity of signal peptidase, hence cleavage of the ppI signal peptide occurred at precisely the same site as in the native precursor. This is in contrast to results found in prokaryotic systems. These data demonstrate that the first 38 residues of ppI encode all the information necessary for binding to the endoplasmic reticulum membrane, translocation, and proteolytic (signal sequence) processing.

1987 ◽  
Vol 104 (6) ◽  
pp. 1705-1714 ◽  
Author(s):  
J Finidori ◽  
L Rizzolo ◽  
A Gonzalez ◽  
G Kreibich ◽  
M Adesnik ◽  
...  

The co-translational insertion of polypeptides into endoplasmic reticulum membranes may be initiated by cleavable amino-terminal insertion signals, as well as by permanent insertion signals located at the amino-terminus or in the interior of a polypeptide. To determine whether the location of an insertion signal within a polypeptide affects its function, possibly by affecting its capacity to achieve a loop disposition during its insertion into the membrane, we have investigated the functional properties of relocated insertion signals within chimeric polypeptides. An artificial gene encoding a polypeptide (THA-HA), consisting of the luminal domain of the influenza hemagglutinin preceded by its amino-terminal signal sequence and linked at its carboxy-terminus to an intact prehemagglutinin polypeptide, was constructed and expressed in in vitro translation systems containing microsomal membranes. As expected, the amino-terminal signal initiated co-translational insertion of the hybrid polypeptide into the membranes. The second, identical, interiorized signal, however, was not recognized by the signal peptidase and was translocated across the membrane. The failure of the interiorized signal to be cleaved may be attributed to the fact that it enters the membrane as part of a translocating polypeptide and therefore cannot achieve the loop configuration that is thought to be adopted by signals that initiate insertion. The finding that the interiorized signal did not halt translocation of downstream sequences, even though it contains a hydrophobic region and must enter the membrane in the same configuration as natural stop-transfer signals, indicates that the HA insertion signal lacks essential elements of halt transfer signals that makes the latter effective membrane-anchoring domains. When the amino-terminal insertion signal of the THA-HA chimera was deleted, the interior signal was incapable of mediating insertion, probably because of steric hindrance by the folded preceding portions of the chimera. Several chimeras were constructed in which the interiorized signal was preceded by polypeptide segments of various lengths. A signal preceded by a segment of 111 amino acids was also incapable of initiating insertion, but insertion took place normally when the segment preceding the signal was only 11-amino acids long.(ABSTRACT TRUNCATED AT 400 WORDS)


1981 ◽  
Author(s):  
G M Fuller ◽  
J M Nickerson

Fibrinogen is a hepatically derived plasma glycoprotein that is composed of three pairs of nonidentical chains linked together by complex sets of disulfide bridges. In an effort to understand the molecular and cellular processes of translating and assembling this important multichained protein we have utilized an in vitro translating system using mRNA’s for rat fibrinogen. Highly specific antibodies to fibrinogen and to each chain have been developed and used to immunoprecipitate the nascent Aα, Bβ, and γ polypeptides. We have also used a rat hepatoma cell line which synthesizes and secretes fibrinogen to prepare nonglycosylated but processed fibrinogen subunits. SDS/PAGE analysis of the translation products clearly show that each polypeptide has a “signal” peptide located at its amino terminal end. The size of the signal peptide is different for each chain. These results demonstrate that separate mRNA’s exist for each of the fibrinogen subunits. Temporal analysis of the glycosylation of the Bβ and γ chain reveal that the γ chain receives its Asn-linked carbohydrate as an early cotranslational event. The Bβ chain’s core carbohydrate moiety is near the end of the polypeptide and our evidence shows that the glycosylation event likely occurs posttranslationally. When microsomal membranes are added to an on-going translation system, all three of fibrinogen's polypeptides translocate into the cisternal space, with an apparent equal stiochiometry. Additional experiments suggest that fibrinogen assembly occurs as a cotranslational process.These studies have been supported in part by NIH HL - 16445 and HL 00162.


1987 ◽  
Vol 242 (3) ◽  
pp. 767-777 ◽  
Author(s):  
A Robinson ◽  
M A Kaderbhai ◽  
B M Austen

An azidophenacyl derivative of a chemically synthesized consensus signal peptide has been prepared. The peptide, when photoactivated in the presence of rough or high-salt-stripped microsomes from pancreas, leads to inhibition of their activity in cotranslational processing of secretory pre-proteins translated from their mRNA in vitro. The peptide binds specifically with high affinity to components in the microsomal membranes from pancreas and liver, and photoreaction of a radioactive form of the azidophenacyl derivative leads to covalent linkage to yield two closely related radiolabelled proteins of Mr about 45,000. These proteins are integrated into the membrane, with large 30,000-Mr domains embedded into the phospholipid bilayer to which the signal peptide binds. A smaller, endopeptidase-sensitive, domain is exposed on the cytoplasmic surface of the microsomal vesicles. The specificity and selectivity of the binding of azidophenacyl-derivatized consensus signal peptide was demonstrated by concentration-dependent inhibition of photolabelling by the ‘cold’ synthetic consensus signal peptide and by a natural internal signal sequence cleaved and isolated from ovalbumin. The properties of the labelled 45,000-Mr protein-signal peptide complexes, i.e. mass, pI, ease of dissociation from the membrane by detergent or salts and immunological properties, distinguish them from other proteins, e.g. subunits of signal recognition particle, docking protein and signal peptidase, already known to be involved in targetting and processing of nascent secretory proteins at the rough endoplasmic reticulum membrane. Although the 45,000-Mr signal peptide binding protein displays properties similar to those of the signal peptidase, a component of the endoplasmic reticulum, the azido-derivatized consensus signal peptide does not interact with it. It is proposed that the endoplasmic reticulum proteins with which the azidophenacyl-derivatized consensus signal peptide interacts to yield the 45,000-Mr adducts may act as receptors for signals in nascent secretory pre-proteins in transduction of changes in the endoplasmic reticulum which bring about translocation of secretory protein across the membrane.


1984 ◽  
Vol 99 (3) ◽  
pp. 1076-1082 ◽  
Author(s):  
M G Rosenfeld ◽  
E E Marcantonio ◽  
J Hakimi ◽  
V M Ort ◽  
P H Atkinson ◽  
...  

Ribophorins are two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum, which are thought to be involved in the binding of ribosomes. Their biosynthesis was studied in vivo using lines of cultured rat hepatocytes (clone 9) and pituitary cells (GH 3.1) and in cell-free synthesis experiments. In vitro translation of mRNA extracted from free and bound polysomes of clone 9 cells demonstrated that ribophorins are made exclusively on bound polysomes. The primary translation products of ribophorin messengers obtained from cultured hepatocytes or from regenerating livers co-migrated with the respective mature proteins, but had slightly higher apparent molecular weights (2,000) than the unglycosylated forms immunoprecipitated from cells treated with tunicamycin. This indicates that ribophorins, in contrast to all other endoplasmic reticulum membrane proteins previously studied, contain transient amino-terminal insertion signals which are removed co-translationally. Kinetic and pulse-chase experiments with [35S]methionine and [3H]mannose demonstrated that ribophorins are not subjected to electrophoretically detectable posttranslational modifications, such as proteolytic cleavage or trimming and terminal glycosylation of oligosaccharide side chain(s). Direct analysis of the oligosaccharides of ribophorin l showed that they do not contain the terminal sugars characteristic of complex oligosaccharides and that they range in composition from Man8GlcNAc to Man5GlcNAc. These findings, as well as the observation that the mature proteins are sensitive to endoglycosidase H and insensitive to endoglycosidase D, are consistent with the notion that the biosynthetic pathway of the ribophorins does not require a stage of passage through the Golgi apparatus.


1989 ◽  
Vol 109 (5) ◽  
pp. 2033-2043 ◽  
Author(s):  
U C Krieg ◽  
A E Johnson ◽  
P Walter

The molecular environment of secretory proteins during translocation across the ER membrane was examined by photocross-linking. Nascent preprolactin chains of various lengths, synthesized by in vitro translation of truncated messenger RNAs in the presence of N epsilon-(5-azido-2-nitrobenzoyl)-Lys-tRNA, signal recognition particle, and microsomal membranes, were used to position photoreactive probes at various locations within the membrane. Upon photolysis, each nascent chain species was cross-linked to an integral membrane glycoprotein with a deduced mass of 39 kD (mp39) via photoreactive lysines located in either the signal sequence or the mature prolactin sequence. Thus, different portions of the nascent preprolactin chain are in close proximity to the same membrane protein during the course of translocation, and mp39 therefore appears to be part of the translocon, the specific site of protein translocation across the ER membrane. The similarity of the molecular and cross-linking properties of mp39 and the glyco-protein previously identified as a signal sequence receptor (Wiedmann, M., T. V. Kurzchalia, E. Hartmann, and T. A. Rapoport. 1987. Nature [Lond.]. 328: 830-833) suggests that these two proteins may be identical. Our data indicate, however, that mp39 does not (or not only) function as a signal sequence receptor, but rather may be part of a putative translocation tunnel.


1993 ◽  
Vol 13 (10) ◽  
pp. 6435-6441 ◽  
Author(s):  
P Singh ◽  
B L Tang ◽  
S H Wong ◽  
W Hong

The mammalian KDEL receptor is an integral membrane protein with seven hydrophobic regions. Fusion proteins comprising a 37-kDa N-glycosylation reporter fused downstream of amino-terminal fragments of the KDEL receptor with varying numbers of hydrophobic regions were synthesized in an in vitro translation system containing canine pancreatic microsomes. The luminal or cytosolic orientation of the reporter, and hence of the hydrophilic region to which it is fused, was inferred from the presence or absence of glycosylation, which occurs only in the lumen of the microsomes. The cytosolic orientation of the N and C termini was also confirmed immunocytochemically. Our results suggest that the KDEL receptor is inserted into the membrane with only six transmembrane domains and that both the amino and carboxy termini are located in the cytoplasm.


2003 ◽  
Vol 384 (1) ◽  
pp. 175-182 ◽  
Author(s):  
J. Müllegger ◽  
A. Rustom ◽  
G. Kreil ◽  
H.-H. Gerdes ◽  
G. Lepperdinger

AbstractHyaluronan is the sole glycosaminoglycan whose biosynthesis takes place directly at the plasma membrane. The mechanism by which hyaluronan synthase (HAS) becomes inserted there, as well as the question of how the enzyme discriminates between particular membrane species in polarized cells, are largely unknown. In vitro translation of HAS suggested that the nascent protein becomes stabilized in the presence of microsomal membranes, but would not insert spontaneously into membranes after being translated in the absence of those. We therefore monitored the membrane attachment of enzymatically active fusion proteins consisting of Xenopus HAS1 and green fluorescent protein shortly after de novo synthesis in Vero cells. Our data strongly suggest that HAS proteins are directly translated on the ER membrane without exhibiting an N-terminal signal sequence. From there the inactive protein is transferred to the plasma membrane via the secretory pathway. For unknown reasons, HAS inserted into membranes other than the plasma membrane remains inactive.


Author(s):  
Dennis Shields ◽  
Thomas G. Warren ◽  
Sara E. Roth ◽  
Reza F. Green

Most polypeptides destined for secretion are synthesized on polyribosomes bound to the membrane of the endoplasmic reticulum (E.R.), in contrast, cytosolic proteins are made on free ribosomes. When the messenger RNA (mRNA) for a secretory protein is translated in a cell-free protein synthesizing system, the product is usually larger than the mature protein by about 3,000 daltons. Numerous studies have demonstrated that the higher molecular weight of the cell-free translation product can be attributed to an amino terminal extension of about 20-30 amino acids termed the “signal peptide”. This signal peptide is thought to mediate binding of ribosomes bearing the nascent polypeptide chain to the membrane of the endoplasmic reticulum. Upon interaction with the E.R., the polypeptide chain is translocated across the membrane usually resulting in proteolytic removal of the signal peptide and segregation of the “processed” polypeptide into the ER. cisternae. This series of reactions can be followed in vitro by supplementing the cell-free protein synthesizing system with heterologous microsomal membranes which have been stripped of their endogenous ribosomes.


1985 ◽  
Vol 101 (6) ◽  
pp. 2292-2301 ◽  
Author(s):  
E Perara ◽  
V R Lingappa

To determine whether a functional amino terminal signal sequence can be active at an internal position, a hybrid gene was constructed in which the entire coding region of bovine preprolactin cDNA was inserted into chimpanzee alpha-globin cDNA 109 codons downstream from the initiation codon of globin. When RNA synthesized in vitro from this plasmid (pSPGP1) was translated in the rabbit reticulocyte cell-free system, a 32-kD protein was produced that was both prolactin and globin immunoreactive. When microsomal membranes were present during translation (but not when added posttranslationally), a 26-kD and a 14-kD product were also observed. By immunoreactivity and electrophoretic mobility, the 26-kD protein was identical to mature prolactin, and the 14-kD protein appeared to be the globin domain with the prolactin signal sequence attached at its carboxy terminus. From (a) posttranslational proteolysis in the presence and absence of detergent, (b) sedimentation of vesicles in the presence and absence of sodium carbonate pH 11.5, and (c) N-linked glycosylation of the globin-immunoreactive fragment after insertion of an Asn-X-Ser N-linked glycosylation site into the globin coding region of pSPGP1, it appears that all of the 26-kD and some of the 14-kD products, but none of the 32-kD precursor, have been translocated to the lumen of the membrane vesicles. Thus, when engineered to an internal position, the prolactin signal sequence is able to translocate both flanking protein domains. These data have implications for the understanding of translocation of proteins across the membrane of the endoplasmic reticulum.


1992 ◽  
Vol 118 (2) ◽  
pp. 481-490 ◽  
Author(s):  
G H Miao ◽  
Z Hong ◽  
D P Verma

Soybean nodulin-26, a homologue of bovine eye lens major intrinsic protein (MIP-26), is an integral protein of the peribacteroid membrane in symbiotic root nodules. It comprises 271 amino acids with six potential transmembrane domains and lacks an amino-terminal signal sequence. A full-length nodulin-26 cDNA and its various deletion derivatives were transcribed in vitro after linking them to bacteriophage T3 promoter. In vitro translation of these transcripts in a rabbit reticulocyte lysate, in the presence or absence of canine pancreatic microsomal membranes, suggested that nodulin-26 is cotranslationally inserted into the microsomes without a cleavable signal peptide. The first two transmembrane domains (103 amino acids) of the protein are sufficient for microsomal membrane insertion. Membrane-translocated nodulin-26 binds to Con-A and is sensitive to endoglycosidase-H treatment, suggesting that it is glycosylated. Native nodulin-26 from root nodules retains its sugar moiety as it, too, binds to Con-A. Chemical cleavage mapping at cysteine residues, a trypsin protection assay, and the Con-A binding affinity of nodulin-26 suggested that both the NH2 and COOH termini of this protein are on the cytoplasmic surface of the peribacteroid membrane, while the glycosidic residue is on the surface of the membrane facing the bacteroids. In vitro phosphorylation experiments showed that nodulin-26 is a major phosphorylated protein in the peribacteroid membrane. This phosphorylation is mediated by a Ca(2+)-dependent, calmodulin-independent protein kinase located in the peribacteriod membrane. Externally supplied acid phosphatase dephosphorylates this protein, but alkaline phosphatase does not. Based on its homology with several eukaryotic and prokaryotic channel-type membrane proteins, nodulin-26 may form a channel translocating specific molecules to the bacteroids during endosymbiosis in legume plants.


Sign in / Sign up

Export Citation Format

Share Document