scholarly journals Direct probing of the interaction between the signal sequence of nascent preprolactin and the signal recognition particle by specific cross-linking.

1987 ◽  
Vol 104 (2) ◽  
pp. 201-208 ◽  
Author(s):  
M Wiedmann ◽  
T V Kurzchalia ◽  
H Bielka ◽  
T A Rapoport

We have studied the interaction between the signal sequence of nascent preprolactin and the signal recognition particle (SRP) during the initial events in protein translocation across the endoplasmic reticulum membrane. A new method of affinity labeling was used, whereby lysine residues, carrying the photoreactive group 4-(3-trifluoromethyldiazirino) benzoic acid in their side chains, are incorporated into a protein by means of modified lysyl-tRNA, and cross-linking to the interacting component is induced by irradiation. SRP interacts through its Mr 54,000 polypeptide component with the signal sequences of nascent preprolactin chains containing about 70 residues, and with decreasing affinity with longer chains as well; it causes inhibition of elongation. Binding of SRP is reversible and requires the nascent chain to be bound to a functional ribosome. SRP cross-linked to the signal sequence still inhibits elongation but does not prevent it completely. We conclude that SRP does not block the exit site of the polypeptide chain on the ribosome. The SRP receptor of the endoplasmic reticulum membrane displaces the signal sequence from SRP and, even if SRP is cross-linked, releases elongation arrest.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Thomas R Noriega ◽  
Jin Chen ◽  
Peter Walter ◽  
Joseph D Puglisi

The signal recognition particle (SRP) directs translating ribosome-nascent chain complexes (RNCs) that display a signal sequence to protein translocation channels in target membranes. All previous work on the initial step of the targeting reaction, when SRP binds to RNCs, used stalled and non-translating RNCs. This meant that an important dimension of the co-translational process remained unstudied. We apply single-molecule fluorescence measurements to observe directly and in real-time E. coli SRP binding to actively translating RNCs. We show at physiologically relevant SRP concentrations that SRP-RNC association and dissociation rates depend on nascent chain length and the exposure of a functional signal sequence outside the ribosome. Our results resolve a long-standing question: how can a limited, sub-stoichiometric pool of cellular SRP effectively distinguish RNCs displaying a signal sequence from those that are not? The answer is strikingly simple: as originally proposed, SRP only stably engages translating RNCs exposing a functional signal sequence.


2012 ◽  
Vol 23 (16) ◽  
pp. 3027-3040 ◽  
Author(s):  
Ying Zhang ◽  
Uta Berndt ◽  
Hanna Gölz ◽  
Arlette Tais ◽  
Stefan Oellerer ◽  
...  

Nascent polypeptide-associated complex (NAC) was initially found to bind to any segment of the nascent chain except signal sequences. In this way, NAC is believed to prevent mistargeting due to binding of signal recognition particle (SRP) to signalless ribosome nascent chain complexes (RNCs). Here we revisit the interplay between NAC and SRP. NAC does not affect SRP function with respect to signalless RNCs; however, NAC does affect SRP function with respect to RNCs targeted to the endoplasmic reticulum (ER). First, early recruitment of SRP to RNCs containing a signal sequence within the ribosomal tunnel is NAC dependent. Second, NAC is able to directly and tightly bind to nascent signal sequences. Third, SRP initially displaces NAC from RNCs; however, when the signal sequence emerges further, trimeric NAC·RNC·SRP complexes form. Fourth, upon docking to the ER membrane NAC remains bound to RNCs, allowing NAC to shield cytosolically exposed nascent chain domains not only before but also during cotranslational translocation. The combined data indicate a functional interplay between NAC and SRP on ER-targeted RNCs, which is based on the ability of the two complexes to bind simultaneously to distinct segments of a single nascent chain.


1995 ◽  
Vol 128 (3) ◽  
pp. 273-282 ◽  
Author(s):  
J D Miller ◽  
S Tajima ◽  
L Lauffer ◽  
P Walter

The signal recognition particle receptor (SR) is required for the cotranslational targeting of both secretory and membrane proteins to the endoplasmic reticulum (ER) membrane. During targeting, the SR interacts with the signal recognition particle (SRP) which is bound to the signal sequence of the nascent protein chain. This interaction catalyzes the GTP-dependent transfer of the nascent chain from SRP to the protein translocation apparatus in the ER membrane. The SR is a heterodimeric protein comprised of a 69-kD subunit (SR alpha) and a 30-kD subunit (SR beta) which are associated with the ER membrane in an unknown manner. SR alpha and the 54-kD subunits of SRP (SRP54) each contain related GTPase domains which are required for SR and SRP function. Molecular cloning and sequencing of a cDNA encoding SR beta revealed that SR beta is a transmembrane protein and, like SR alpha and SRP54, is a member of the GTPase superfamily. Although SR beta defines its own GTPase subfamily, it is distantly related to ARF and Sar1. Using UV cross-linking, we confirm that SR beta binds GTP specifically. Proteolytic digestion experiments show that SR alpha is required for the interaction of SRP with SR. SR alpha appears to be peripherally associated with the ER membrane, and we suggest that SR beta, as an integral membrane protein, mediates the membrane association of SR alpha. The discovery of its guanine nucleotide-binding domain, however, makes it likely that its role is more complex than that of a passive anchor for SR alpha. These findings suggest that a cascade of three directly interacting GTPases functions during protein targeting to the ER membrane.


1998 ◽  
Vol 9 (1) ◽  
pp. 117-130 ◽  
Author(s):  
David Raden ◽  
Reid Gilmore

Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC), respectively, act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP-dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the nonselective interaction between the ribosome and the Sec61 complex.


1992 ◽  
Vol 117 (1) ◽  
pp. 15-25 ◽  
Author(s):  
G Migliaccio ◽  
CV Nicchitta ◽  
G Blobel

Detergent extracts of canine pancreas rough microsomal membranes were depleted of either the signal recognition particle receptor (SR), which mediates the signal recognition particle (SRP)-dependent targeting of the ribosome/nascent chain complex to the membrane, or the signal sequence receptor (SSR), which has been proposed to function as a membrane bound receptor for the newly targeted nascent chain and/or as a component of a multi-protein translocation complex responsible for transfer of the nascent chain across the membrane. Depletion of the two components was performed by chromatography of detergent extracts on immunoaffinity supports. Detergent extracts lacking either SR or SSR were reconstituted and assayed for activity with respect to SR dependent elongation arrest release, nascent chain targeting, ribosome binding, secretory precursor translocation, and membrane protein integration. Depletion of SR resulted in the loss of elongation arrest release activity, nascent chain targeting, secretory protein translocation, and membrane protein integration, although ribosome binding was unaffected. Full activity was restored by addition of immunoaffinity purified SR before reconstitution of the detergent extract. Surprisingly, depletion of SSR was without effect on any of the assayed activities, indicating that SSR is either not required for translocation or is one of a family of functionally redundant components.


2003 ◽  
Vol 163 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Gottfried Eisner ◽  
Hans-Georg Koch ◽  
Konstanze Beck ◽  
Joseph Brunner ◽  
Matthias Müller

We have systematically analyzed the molecular environment of the signal sequence of a growing secretory protein from Escherichia coli using a stage- and site-specific cross-linking approach. Immediately after emerging from the ribosome, the signal sequence of pOmpA is accessible to Ffh, the protein component of the bacterial signal recognition particle, and to SecA, but it remains attached to the surface of the ribosome via protein L23. These contacts are lost upon further growth of the nascent chain, which brings the signal sequence into sole proximity to the chaperone Trigger factor (TF). In its absence, nascent pOmpA shows extended contacts with L23, and even long chains interact in these conditions proficiently with Ffh. Our results suggest that upon emergence from the ribosome, the signal sequence of an E. coli secretory protein gradually becomes sequestered by TF. Although TF thereby might control the accessibility of pOmpA's signal sequence to Ffh and SecA, it does not influence interaction of pOmpA with SecB.


2006 ◽  
Vol 17 (9) ◽  
pp. 3860-3869 ◽  
Author(s):  
Julia Schaletzky ◽  
Tom A. Rapoport

We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC–SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC–SRP complexes can overcome the competition by nontranslating ribosomes.


2000 ◽  
Vol 151 (1) ◽  
pp. 167-178 ◽  
Author(s):  
Kathrin Plath ◽  
Tom A. Rapoport

In posttranslational translocation in yeast, completed protein substrates are transported across the endoplasmic reticulum membrane through a translocation channel formed by the Sec complex. We have used photo-cross-linking to investigate interactions of cytosolic proteins with a substrate synthesized in a reticulocyte lysate system, before its posttranslational translocation through the channel in the yeast membrane. Upon termination of translation, the signal recognition particle (SRP) and the nascent polypeptide–associated complex (NAC) are released from the polypeptide chain, and the full-length substrate interacts with several different cytosolic proteins. At least two distinct complexes exist that contain among other proteins either 70-kD heat shock protein (Hsp70) or tailless complex polypeptide 1 (TCP1) ring complex/chaperonin containing TCP1 (TRiC/CCT), which keep the substrate competent for translocation. None of the cytosolic factors appear to interact specifically with the signal sequence. Dissociation of the cytosolic proteins from the substrate is accelerated to the same extent by the Sec complex and an unspecific GroEL trap, indicating that release occurs spontaneously without the Sec complex playing an active role. Once bound to the Sec complex, the substrate is stripped of all cytosolic proteins, allowing it to subsequently be transported through the membrane channel without the interference of cytosolic binding partners.


1985 ◽  
Vol 100 (6) ◽  
pp. 1913-1921 ◽  
Author(s):  
V Siegel ◽  
P Walter

Signal recognition particle (SRP) is a ribonucleoprotein consisting of six distinct polypeptides and one molecule of small cytoplasmic 7SL RNA. It was previously shown to promote the co-translational translocation of secretory proteins across the endoplasmic reticulum by (a) arresting the elongation of the presecretory nascent chain at a specific point, and (b) interacting with the SRP receptor, an integral membrane protein of the endoplasmic reticulum which is active in releasing the elongation arrest. Recently a procedure was designed by which the particle could be disassembled into its protein and RNA components. We have further separated the SRP proteins into four homogeneous fractions. When recombined with each other and with 7SL RNA, they formed fully active SRP. Particles missing specific proteins were assembled in the hope that some of these would retain some functional activity. SRP(-9/14), the particle lacking the 9-kD and 14-kD polypeptides, was fully active in promoting translocation, but was completely inactive in elongation arrest. This implied that elongation arrest is not a prerequisite for protein translocation. SRP receptor was required for SRP(-9/14)-mediated translocation to occur, and thus must play some role in the translocation process in addition to releasing the elongation arrest.


1993 ◽  
Vol 123 (4) ◽  
pp. 799-807 ◽  
Author(s):  
T Connolly ◽  
R Gilmore

Translocation of proteins across the endoplasmic reticulum membrane is a GTP-dependent process. The signal recognition particle (SRP) and the SRP receptor both contain subunits with GTP binding domains. One GTP-dependent reaction during protein translocation is the SRP receptor-mediated dissociation of SRP from the signal sequence of a nascent polypeptide. Here, we have assayed the SRP and the SRP receptor for GTP binding and hydrolysis activities. GTP hydrolysis by SRP was not detected, so the maximal GTP hydrolysis rate for SRP was estimated to be < 0.002 mol GTP hydrolyzed x mol of SRP-1 x min-1. The intrinsic GTP hydrolysis activity of the SRP receptor ranged between 0.02 and 0.04 mol GTP hydrolyzed x mol of SRP receptor-1 x min-1. A 40-fold enhancement of GTP hydrolysis activity relative to that observed for the SRP receptor alone was obtained when complexes were formed between SRP and the SRP receptor. GTP hydrolysis activity was inhibited by GDP, but not by ATP. Extended incubation of the SRP or the SRP receptor with GTP resulted in substoichiometric quantities of protein-bound ribonucleotide. SRP-SRP receptor complexes engaged in GTP hydrolysis were found to contain a minimum of one bound guanine ribonucleotide per SRP-SRP receptor complex. We conclude that the GTP hydrolysis activity described here is indicative of one of the GTPase cycles that occur during protein translocation across the endoplasmic reticulum.


Sign in / Sign up

Export Citation Format

Share Document