scholarly journals Development of Phodopus sungorus brown preadipocytes in primary cell culture: effect of an atypical beta-adrenergic agonist, insulin, and triiodothyronine on differentiation, mitochondrial development, and expression of the uncoupling protein UCP.

1991 ◽  
Vol 115 (6) ◽  
pp. 1783-1790 ◽  
Author(s):  
S Klaus ◽  
A M Cassard-Doulcier ◽  
D Ricquier

A new cellular model for the study of brown adipocyte development and differentiation in vitro is presented. Preadipocytes isolated from brown adipose tissue (BAT) of the djungarian dwarf hamster Phodopus sungorus are able to proliferate and differentiate in vitro into true brown adipocytes able to express the BAT marker protein the uncoupling protein (UCP). Whereas basal UCP expression is very low, its mRNA levels as well as the UCP detected by immunoblotting are highly increased by beta-adrenergic stimulation. The novel, atypical beta-adrenergic compound D7114 (ICI Pharmaceuticals, Macclesfield, Cheshire, England) was found to increase the number of adipocytes as well as UCP mRNA and UCP content of mitochondria, indicating the involvement of an atypical or beta 3 receptor. Insulin was found to play an important role in brown adipocyte differentiation and mitochondrial development, whereas T3 seemed to be implicated more directly in UCP expression. In a defined, serum-free medium a synergistic stimulatory action of insulin and T3 on UCP expression was found, which seems to involve a pathway different from that of beta-adrenergic UCP stimulation.

2019 ◽  
Vol 105 (4) ◽  
pp. e994-e1005 ◽  
Author(s):  
Mette Ji Riis-Vestergaard ◽  
Bjørn Richelsen ◽  
Jens Meldgaard Bruun ◽  
Wei Li ◽  
Jacob B Hansen ◽  
...  

Abstract Purpose Brown adipose tissue (BAT) activation in humans has gained interest as a potential target for treatment of obesity and insulin resistance. In rodents, BAT is primarily induced through beta-3 adrenergic receptor (ADRB3) stimulation, whereas the primary beta adrenergic receptors (ADRBs) involved in human BAT activation are debated. We evaluated the importance of different ADRB subtypes for uncoupling protein 1 (UCP1) induction in human brown adipocytes. Methods A human BAT cell model (TERT-hBA) was investigated for subtype-specific ADRB agonists and receptor knockdown on UCP1 mRNA levels and lipolysis (glycerol release). In addition, fresh human BAT biopsies and TERT-hBA were evaluated for expression of ADRB1, ADRB2, and ADRB3 using RT-qPCR. Results The predominant ADRB subtype in TERT-hBA adipocytes and BAT biopsies was ADRB1. In TERT-hBA, UCP1 mRNA expression was stimulated 11.0-fold by dibutyryl cAMP (dbcAMP), 8.0-fold to 8.4-fold by isoproterenol (ISO; a pan-ADRB agonist), and 6.1-fold to 12.7-fold by dobutamine (ADRB1 agonist), whereas neither procaterol (ADRB2 agonist), CL314.432, or Mirabegron (ADRB3 agonists) affected UCP1. Similarly, dbcAMP, ISO, and dobutamine stimulated glycerol release, whereas lipolysis was unaffected by ADRB2 and ADRB3 agonists. Selective knockdown of ADRB1 significantly attenuated ISO-induced UCP1 expression. Conclusion The adrenergic stimulation of UCP1 and lipolysis may mainly be mediated through ADRB1. Moreover, ADRB1 is the predominant ADRB in both TERT-hBA and human BAT biopsies. Thus, UCP1 expression in human BAT may, unlike in rodents, primarily be regulated by ADRB1. These findings may have implications for ADRB agonists as future therapeutic compounds for human BAT activation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saki Takayanagi ◽  
Kengo Watanabe ◽  
Takeshi Maruyama ◽  
Motoyuki Ogawa ◽  
Kazuhiro Morishita ◽  
...  

AbstractRecent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


2002 ◽  
Vol 282 (6) ◽  
pp. R1789-R1797 ◽  
Author(s):  
Enrique Rodrı́guez ◽  
Joan Ribot ◽  
Andreu Palou

Conjugated linoleic acid (CLA) is reported to have health benefits, including reduction of body fat. Previous studies have shown that brown adipose tissue (BAT) is particularly sensitive to CLA-supplemented diet feeding. Most of them use mixtures containing several CLA isomers, mainly cis-9, trans-11 and trans-10, cis-12 in equal concentration. Our aim was to characterize the separate effects of both CLA isomers on thermogenic capacity in cultured brown adipocytes. The CLA isomers showed opposite effects. Hence, on the one hand, trans-10, cis-12 inhibited uncoupling protein (UCP) 1 induction by norepinephrine (NE) and produced a decrease in leptin mRNA levels. These effects were associated with a blockage of CCAAT-enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ2 mRNA expression. On the other hand, cis-9, trans-11 enhanced the UCP1 elicited by NE, an effect reported earlier for polyunsaturated fatty acids and also observed here for linoleic acid. These findings could explain, at least in part, the effects observed in vivo when feeding a CLA mixture supplemented diet as a result of the combined action of CLA isomers (reduction of adipogenesis and defective BAT thermogenesis that could be through trans-10, cis-12 and enhanced UCP1 thermogenic capacity through cis-9, trans-11).


1996 ◽  
Vol 317 (3) ◽  
pp. 827-833 ◽  
Author(s):  
Pere PUIGSERVER ◽  
Francisca VÁZQUEZ ◽  
María L. BONET ◽  
Catalina PICÓ ◽  
Andreu PALOU

The effects of retinoic acid (RA) isomers (all-trans-RA and 9-cis-RA) on the appearance of uncoupling protein (UCP; thermogenin), the only unequivocal molecular marker of the brown adipocyte differentiated phenotype, have been investigated in primary cultures of brown adipocytes, in the brown adipocyte cell line HIB 1B and directly in intact mice. The results obtained with cultured cells indicate that retinoids function as inducers of the appearance of UCP and, at the same time, partially inhibit brown adipocyte cell proliferation. The two RA isomers displayed similar effectiveness as UCP inducers, their effect being comparable with that triggered by noradrenaline, so far considered to be the main modulator of UCP gene expression. The effectiveness of retinoids as UCP inducers was dependent on the stage of brown adipocyte differentiation, being maximal in confluent primary cells and in the medium–late differentiation stage of HIB 1B cells. Corroborating the results obtained in vitro, we show that administration of all-trans-RA or 9-cis-RA to mice leads to an increase in their brown adipose tissue specific UCP content. 9-cis-RA treatment also prevented the loss of UCP on cold deacclimation. To our knowledge, this is the first report of a stimulatory effect of retinoid compounds on UCP induction in vivo.


2014 ◽  
Vol 306 (4) ◽  
pp. E363-E372 ◽  
Author(s):  
Ruidan Xue ◽  
Yun Wan ◽  
Shuo Zhang ◽  
Qiongyue Zhang ◽  
Hongying Ye ◽  
...  

There are two different types of fat present in mammals: white adipose tissue, the primary site of energy storage, and brown adipose tissue, which is specializes in energy expenditure. Factors that specify the developmental fate and function of brown fat are poorly understood. Bone morphogenic proteins (BMPs) play an important role in adipogenesis. While BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage, BMP7 triggers commitment of progenitor cells to a brown adipocyte lineage and activates brown adipogenesis. To investigate the differential effects of BMPs on the development of adipocytes, C3H10T1/2 pluripotent cells were pretreated with BMP4 and BMP7, followed by different adipogenic induction cocktails. Both BMP4 and BMP7 unexpectedly activated a full program of brown adipogenesis, including induction of the brown fat-defining marker uncoupling protein-1 (UCP1), increasing the expression of early regulators of brown fat fate PRDM16 (PR domain-containing 16) and induction of mitochondrial biogenesis and function. Implantation of BMP4-pretreated C3H10T1/2 cells into nude mice resulted in the development of adipose tissue depots containing UCP1-positive brown adipocytes. Interestingly, BMP4 could also induce brown fat-like adipocytes in both white and brown preadipocytes, thereby decreasing the classical brown adipocyte marker Zic1 and increasing the recently identified beige adipocyte marker TMEM26. The data indicate an important role for BMP4 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro and offers a potentially new therapeutic approach for the treatment of obesity.


1999 ◽  
Vol 277 (1) ◽  
pp. R147-R153 ◽  
Author(s):  
Archana Chaudhry ◽  
James G. Granneman

Brown adipose tissue contains both β1- and β3-adrenergic receptors (β-ARs), and whereas both receptor subtypes can activate adenylyl cyclase, recent studies suggest that these subtypes have different pharmacological properties and may serve different signaling functions. In this study, primary brown adipocyte cultures were used to determine the role of β-AR subtypes in mediating lipolysis and uncoupling protein-1 (UCP1) gene expression, elicited by the physiological neurohormone norepinephrine (NE). NE increased both lipolysis and UCP1 mRNA levels in brown adipocyte cultures; the β1-receptor-selective antagonist CGP-20712A strongly antagonized the increase in UCP1 gene expression but had little effect on lipolysis. The β3-receptor-selective agonist CL-316243 (CL) also increased lipolysis and UCP1 mRNA levels, yet CL was more potent in stimulating lipolysis than UCP1 gene expression. NE also increased the phosphorylation of cAMP response element-binding protein (CREB) and perilipin (PL), both of which are protein kinase A substrates that are differentially targeted to the nucleus and lipid droplets, respectively. β1-receptor blockade inhibited NE-stimulated phosphorylation of CREB but not PL. The results suggest that β-AR subtypes regulate different physiological responses stimulated by NE in brown adipocyte cultures in part by differentially transducing signals to subcellular compartments.


1993 ◽  
Vol 265 (1) ◽  
pp. E81-E87 ◽  
Author(s):  
A. Moriscot ◽  
R. Rabelo ◽  
A. C. Bianco

Uncoupling protein (UCP) mRNA levels were studied in the interscapular brown adipose tissue (BAT) of rats undergoing different manipulations of the adrenal function and BAT adrenergic stimulation. Adrenalectomy did not affect UCP mRNA levels for up to 8 days post-surgery. However, adrenalectomized rats underwent a greater increase in UCP mRNA levels (26%) than intact rats after 4 h of cold exposure. Administration of corticosterone (500 micrograms.100 g body wt-1.day-1 sc) to intact or adrenalectomized rats, kept at 28 degrees C, produced a marked decrease of UCP mitochondrial content and cellular mRNA levels in a time-dependent manner (30% by 12 h and 50% by 24 h). Pretreatment of intact rats with corticosterone virtually abolished the UCP mRNA response to cold and norepinephrine (NE). In contrast, when rats had been preexposed to cold for 96 h, the injection of corticosterone did not affect UCP mRNA. These results show that corticosterone is a powerful inhibitor of UCP gene expression in vivo. Corticosterone inhibits both basal gene expression at thermoneutrality and the response to adrenergic stimulation either by cold or exogenous NE, suggesting a direct action on BAT. The data further suggest that corticosterone inhibits the initial accumulation of UCP mRNA mediated by UCP gene transcription, rather than accelerating the degradation of UCP mRNA.


2021 ◽  
Vol 14 (8) ◽  
pp. 728
Author(s):  
Federica Mannino ◽  
Giovanni Pallio ◽  
Alessandra Bitto ◽  
Domenica Altavilla ◽  
Letteria Minutoli ◽  
...  

Obesity is a worldwide chronic metabolic disease characterized by an abnormal fat accumulation and represents one of the main risk factors for several diseases. White adipose tissue is the primary site for energy storage in the form of triglycerides, whereas brown adipose tissue does not store energy-providing lipids but rather dissipates it by producing heat. White-to-brown adipocyte trans-differentiation could represent a new target of anti-obesity strategies and result in fat reduction. Previous studies indicated that adenosine receptor activation induces trans-differentiation of white adipocytes to brown adipocytes. The aim of this study was to evaluate the effects of polydeoxyribonucleotide (PDRN), an A2Ar receptor agonist, in an in vitro model of browning. Mouse 3T3-L1 pre-adipocytes were differentiated in mature adipocytes with specific culture media and then treated with PDRN (10 µg/mL), PDRN + ZM241385 (1 µM), CGS21680 (1 µM) and CGS + ZM241385 for 24 h. Cell viability was studied by MTT assay, and browning induction was evaluated by Oil Red O staining and by RT-qPCR to study gene expression of browning markers. PDRN, as well as CGS21680, reduced the accumulation of lipids, cell volume and lipid droplet size; increased the expression of UCP1, PRDM16 and DIO2, considered as browning markers; and reduced the expression of FASn and FABP4, considered as whitening markers. In addition, PDRN decreased leptin expression and enhanced adiponectin mRNA levels. All these effects were abrogated when PDRN was co-incubated with the A2Ar antagonist ZM241385. In conclusion, these results suggest that PDRN is able to induce the white-to-brown adipose differentiation through A2Ar stimulation. Since PDRN is a safe drug already available in the market for other therapeutic indications, its “anti-obesity” potential warrants investigation in a clinical scenario.


1995 ◽  
Vol 311 (1) ◽  
pp. 327-331 ◽  
Author(s):  
M L Bonet ◽  
F Serra ◽  
J C Matamala ◽  
F J García-Palmer ◽  
A Palou

The relative stability against a decrease in adrenergic stimulation of the uncoupling protein (UCP) incorporated into different mitochondrial fractions was investigated in brown-fat-cell cultures. Cultures were initiated with undifferentiated cells from young mice and were acutely stimulated with noradrenaline at confluence (day 7). Cells were harvested just after the finish of the 24 h stimulation treatment or 24 h later, and three mitochondrial fractions were isolated by differential centrifugation: the M1 fraction (1000 g), the M3 fraction (3000 g) and the M15 fraction (15,000 g). The results obtained in vitro indicate that removal of adrenergic stimulation determines a selective loss of UCP from the lightest mitochondrial fractions (M3 and M15). Similar results were obtained in a situation in vivo (24 h starvation in mice) which is known to lead to a decreased noradrenaline input to brown adipose tissue, with decreased UCP levels. Thus brown adipocytes possess different mitochondrial subpopulations, which exhibit characteristic changes in their UCP turnover in response to thermogenic signals.


2000 ◽  
Vol 278 (5) ◽  
pp. E769-E777 ◽  
Author(s):  
Arturo Hernández ◽  
Maria Jesús Obregón

Uncoupling protein (UCP), the mitochondrial protein specific to brown adipose tissue, is activated transcriptionally in response to cold and adrenergic agents. We studied the role of triiodothyronine (T3) on the adrenergic stimulation of UCP mRNA expression by use of primary cultures of rat brown adipocytes. Basal UCP mRNA levels are undetectable. Norepinephrine (NE) increases UCP mRNA during differentiation, not during proliferation. In hypothyroid conditions, UCP mRNA response to NE is almost absent. The presence of T3 (0.2–20 nM) greatly increases the adrenergic response (30-fold). The sensitivity of UCP mRNA responses to NE is potentiated ∼100-fold by the presence of T3. The effect is proportional to the dose and time of preexposure to T3. The increases obtained with NE and T3 are prevented by actinomycin and cycloheximide. T3 greatly stabilizes UCP mRNA transcripts. The effects of thyroxine and retinoic acid are weaker than those of T3. In conclusion, in cultured rat brown adipocytes, T3 is required and both synergizes with NE to increase UCP mRNA and stabilizes its mRNA transcripts.


Sign in / Sign up

Export Citation Format

Share Document