scholarly journals Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations

1994 ◽  
Vol 124 (4) ◽  
pp. 475-490 ◽  
Author(s):  
BD Williams ◽  
RH Waterston

By taking advantage of a lethal phenotype characteristic of Caenorhabditis elegans embryos that fail to move, we have identified 13 genes required for muscle assembly and function and discovered a new lethal class of alleles for three previously known muscle-affecting genes. By staining mutant embryos for myosin and actin we have recognized five distinct classes of genes: mutations in four genes disrupt the assembly of thick and thin filaments into the myofilament lattice as well as the polarized location of these components to the sarcolemma. Mutations in another three genes also disrupt thick and thin filament assembly, but allow proper polarization of lattice components based on the myosin heavy chain isoform that we analyzed. Another two classes of genes are defined by mutations with principal effects on thick or thin filament assembly into the lattice, but not both. The final class includes three genes in which mutations cause relatively minor defects in lattice assembly. Failure of certain mutants to stain with antibodies to specific muscle cell antigens suggest that two genes associated with severe disruptions of myofilament lattice assembly may code for components of the basement membrane and the sarcolemma that are concentrated where dense bodies (Z-line analogs) and M-lines attach to the cell membrane. Similar evidence suggests that one of the genes associated with mild effects on lattice assembly may code for tropomyosin. Many of the newly identified genes are likely to play critical roles in muscle development and function.

1994 ◽  
Vol 127 (1) ◽  
pp. 79-93 ◽  
Author(s):  
S Goetinck ◽  
R H Waterston

Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
David S. Gokhin ◽  
Velia M. Fowler

Efficient striated muscle contraction requires precise assembly and regulation of diverse actin filament systems, most notably the sarcomeric thin filaments of the contractile apparatus. By capping the pointed ends of actin filaments, tropomodulins (Tmods) regulate actin filament assembly, lengths, and stability. Here, we explore the current understanding of the expression patterns, localizations, and functions of Tmods in both cardiac and skeletal muscle. We first describe the mechanisms by which Tmods regulate myofibril assembly and thin filament lengths, as well as the roles of closely related Tmod family variants, the leiomodins (Lmods), in these processes. We also discuss emerging functions for Tmods in the sarcoplasmic reticulum. This paper provides abundant evidence that Tmods are key structural regulators of striated muscle cytoarchitecture and physiology.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1631-1641 ◽  
Author(s):  
L. Chen ◽  
M. Krause ◽  
M. Sepanski ◽  
A. Fire

A family of muscle-specific helix-loop-helix transcription factors (myoD, myogenin, myf-5 and MRF4) has been implicated in the control of vertebrate skeletal myogenesis. Searches for homologues of this family in Caenorhabditis elegans identified a single family member, hlh-1, which is expressed in striated muscles and their clonal precursors. We have isolated a null allele of hlh-1 following chemical mutagenesis. Animals homozygous for the null mutation produce contractile body-wall muscles, although muscle contractions are weak and coordination is defective. In addition to the evident muscle defects, mutant animals fail to complete embryonic elongation and die as larvae or young adults. Ultrastructural analysis of the mutant muscle reveals an apparently normal local lattice of thick and thin filaments, with more global defects in sarcomere organization and muscle cell placement. Mosaic studies using the point mutation and an extrachromosomal transgene indicate that the requirement for hlh-1 is fully zygotic, with no maternal hlh-1 requirement for either muscle development or viability.


1998 ◽  
Vol 143 (5) ◽  
pp. 1201-1213 ◽  
Author(s):  
Kristen McArdle ◽  
Taylor StC. Allen ◽  
Elizabeth A. Bucher

We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.


2015 ◽  
Vol 112 (44) ◽  
pp. 13573-13578 ◽  
Author(s):  
Christopher T. Pappas ◽  
Rachel M. Mayfield ◽  
Christine Henderson ◽  
Nima Jamilpour ◽  
Cathleen Cover ◽  
...  

Leiomodin 2 (Lmod2) is an actin-binding protein that has been implicated in the regulation of striated muscle thin filament assembly; its physiological function has yet to be studied. We found that knockout of Lmod2 in mice results in abnormally short thin filaments in the heart. We also discovered that Lmod2 functions to elongate thin filaments by promoting actin assembly and dynamics at thin filament pointed ends. Lmod2-KO mice die as juveniles with hearts displaying contractile dysfunction and ventricular chamber enlargement consistent with dilated cardiomyopathy. Lmod2-null cardiomyocytes produce less contractile force than wild type when plated on micropillar arrays. Introduction of GFP-Lmod2 via adeno-associated viral transduction elongates thin filaments and rescues structural and functional defects observed in Lmod2-KO mice, extending their lifespan to adulthood. Thus, to our knowledge, Lmod2 is the first identified mammalian protein that functions to elongate actin filaments in the heart; it is essential for cardiac thin filaments to reach a mature length and is required for efficient contractile force and proper heart function during development.


2019 ◽  
Vol 28 (15) ◽  
pp. 2549-2560 ◽  
Author(s):  
Caroline Jirka ◽  
Jasmine H Pak ◽  
Claire A Grosgogeat ◽  
Michael Mario Marchetii ◽  
Vandana A Gupta

Abstract Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific adaptors for Cullin 3 (CUL3) E3 ubiquitin ligase to regulate protein turnover through the ubiquitin-proteasome machinery. Defects in thin filament formation and/or stability are key molecular processes that underlie the disease pathology in NM; however, the role of Kelch proteins in these processes in normal and diseases conditions remains elusive. Here, we describe a role of NM causing Kelch protein, KLHL41, in premyofibil-myofibil transition during skeletal muscle development through a regulation of the thin filament chaperone, nebulin-related anchoring protein (NRAP). KLHL41 binds to the thin filament chaperone NRAP and promotes ubiquitination and subsequent degradation of NRAP, a process that is critical for the formation of mature myofibrils. KLHL41 deficiency results in abnormal accumulation of NRAP in muscle cells. NRAP overexpression in transgenic zebrafish resulted in a severe myopathic phenotype and absence of mature myofibrils demonstrating a role in disease pathology. Reducing Nrap levels in KLHL41 deficient zebrafish rescues the structural and function defects associated with disease pathology. We conclude that defects in KLHL41-mediated ubiquitination of sarcomeric proteins contribute to structural and functional deficits in skeletal muscle. These findings further our understanding of how the sarcomere assembly is regulated by disease-causing factors in vivo, which will be imperative for developing mechanism-based specific therapeutic interventions.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax2066 ◽  
Author(s):  
Rebecca C. Ahrens-Nicklas ◽  
Christopher T. Pappas ◽  
Gerrie P. Farman ◽  
Rachel M. Mayfield ◽  
Tania M. Larrinaga ◽  
...  

Neonatal heart failure is a rare, poorly-understood presentation of familial dilated cardiomyopathy (DCM). Exome sequencing in a neonate with severe DCM revealed a homozygous nonsense variant in leiomodin 2 (LMOD2, p.Trp398*). Leiomodins (Lmods) are actin-binding proteins that regulate actin filament assembly. While disease-causing mutations in smooth (LMOD1) and skeletal (LMOD3) muscle isoforms have been described, the cardiac (LMOD2) isoform has not been previously associated with human disease. Like our patient, Lmod2-null mice have severe early-onset DCM and die before weaning. The infant’s explanted heart showed extraordinarily short thin filaments with isolated cardiomyocytes displaying a large reduction in maximum calcium-activated force production. The lack of extracardiac symptoms in Lmod2-null mice, and remarkable morphological and functional similarities between the patient and mouse model informed the decision to pursue cardiac transplantation in the patient. To our knowledge, this is the first report of aberrant cardiac thin filament assembly associated with human cardiomyopathy.


1985 ◽  
Vol 101 (4) ◽  
pp. 1532-1549 ◽  
Author(s):  
G R Francis ◽  
R H Waterston

The body wall muscle cells of Caenorhabditis elegans contain an obliquely striated myofibrillar lattice that is associated with the cell membrane through two structures: an M-line analogue in the A-band and a Z-disc analogue, or dense-body, in the I-band. By using a fraction enriched in these structures as an immunogen for hybridoma production, we prepared monoclonal antibodies that identify four components of the I-band as determined by immunofluorescence and Western transfer analysis. A major constituent of the dense-body is a 107,000-D polypeptide that shares determinants with vertebrate alpha-actinin. A second dense-body constituent is a more basic and antigenically distinct 107,000-D polypeptide that is localized to a narrow domain of the dense-body at or subjacent to the plasma membrane. This basic dense-body polypeptide is also found at certain cell boundaries where thin filaments in half-bands terminate at membrane-associated structures termed attachment plaques. A third, unidentified antigen is also found closely apposed to the cell membrane in regions of not only the dense-body and attachment plaque, but also the M-line analogue. Finally, a fourth high molecular weight antigen, composed of two polypeptides of approximately 400,000-D, is localized to the I-band regions surrounding the dense-body. The attachment of the dense-body to the cell surface and the differential localization of the dense-body-associated antigens suggest a model for their organization in which the unidentified antigen is a cell surface component, and the two 107,000-D polypeptides define different cytoplasmic domains of the dense-body.


1983 ◽  
Vol 96 (1) ◽  
pp. 100-103 ◽  
Author(s):  
L Traeger ◽  
M A Goldstein

The variation in thin filament length was investigated in slow and fast muscle from adult and neonatal rats. Soleus (slow) muscle from adult, 3-, 7-, and 9-d-old rats, and extensor digitorum longus (EDL; fast) muscle from adult rats were serially cross-sectioned. The number of thin filaments per 0.06 microns2 (TF#) was counted for individual myofibrils followed from the H zone of one sarcomere, through the I-Z-I region, to the H zone of an adjacent sarcomere TF# was pooled by distance from the Z band or AI junction. In both adult muscles, thin filament length varied from 0.18 to 1.20 microns, with approximately 25% of the thin filaments less than 0.7 microns in length. In 7- and 9-d soleus, thin filament length ranged from 0.18 to 1.08 microns; except for the longest (0.18 to 1.20 microns) filaments, the distribution of thin filament lengths was similar to that in adult muscle. In 3-d soleus, thin filament length was more uniform, with less than 5% of the filaments shorter than 0.7 microns. In all neonatal muscles, there were approximately 15% fewer thin filaments per unit area as compared to adult muscles. We conclude: (a) In rat skeletal muscle, thin filaments are not of uniform length, ranging in length from 0.18 to 1.20 microns. (b) There may be two stages of thin filament assembly in neonatal muscle: between 3 and 7 d when short thin filaments may be preferentially or synthesized or inserted near the Z-band, and between 9 d and adult when thin filaments of all lengths may be synthesized or inserted into the myofibril.


2001 ◽  
Vol 155 (6) ◽  
pp. 1043-1054 ◽  
Author(s):  
Michelle Mardahl-Dumesnil ◽  
Velia M. Fowler

Tropomodulin (Tmod) is an actin pointed-end capping protein that regulates actin dynamics at thin filament pointed ends in striated muscle. Although pointed-end capping by Tmod controls thin filament lengths in assembled myofibrils, its role in length specification during de novo myofibril assembly is not established. We used the Drosophila Tmod homologue, sanpodo (spdo), to investigate Tmod's function during muscle development in the indirect flight muscle. SPDO was associated with the pointed ends of elongating thin filaments throughout myofibril assembly. Transient overexpression of SPDO during myofibril assembly irreversibly arrested elongation of preexisting thin filaments. However, the lengths of thin filaments assembled after SPDO levels had declined were normal. Flies with a preponderance of abnormally short thin filaments were unable to fly. We conclude that: (a) thin filaments elongate from their pointed ends during myofibril assembly; (b) pointed ends are dynamically capped at endogenous levels of SPDO so as to allow elongation; (c) a transient increase in SPDO levels during myofibril assembly converts SPDO from a dynamic to a permanent cap; and (d) developmental regulation of pointed-end capping during myofibril assembly is crucial for specification of final thin filament lengths, myofibril structure, and muscle function.


Sign in / Sign up

Export Citation Format

Share Document