scholarly journals The Caenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein.

1994 ◽  
Vol 127 (1) ◽  
pp. 79-93 ◽  
Author(s):  
S Goetinck ◽  
R H Waterston

Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.

1994 ◽  
Vol 124 (4) ◽  
pp. 475-490 ◽  
Author(s):  
BD Williams ◽  
RH Waterston

By taking advantage of a lethal phenotype characteristic of Caenorhabditis elegans embryos that fail to move, we have identified 13 genes required for muscle assembly and function and discovered a new lethal class of alleles for three previously known muscle-affecting genes. By staining mutant embryos for myosin and actin we have recognized five distinct classes of genes: mutations in four genes disrupt the assembly of thick and thin filaments into the myofilament lattice as well as the polarized location of these components to the sarcolemma. Mutations in another three genes also disrupt thick and thin filament assembly, but allow proper polarization of lattice components based on the myosin heavy chain isoform that we analyzed. Another two classes of genes are defined by mutations with principal effects on thick or thin filament assembly into the lattice, but not both. The final class includes three genes in which mutations cause relatively minor defects in lattice assembly. Failure of certain mutants to stain with antibodies to specific muscle cell antigens suggest that two genes associated with severe disruptions of myofilament lattice assembly may code for components of the basement membrane and the sarcolemma that are concentrated where dense bodies (Z-line analogs) and M-lines attach to the cell membrane. Similar evidence suggests that one of the genes associated with mild effects on lattice assembly may code for tropomyosin. Many of the newly identified genes are likely to play critical roles in muscle development and function.


1997 ◽  
Vol 200 (10) ◽  
pp. 1509-1514 ◽  
Author(s):  
D L Laughton ◽  
G G Lunt ◽  
A J Wolstenholme

Gene promoter/LacZ reporter constructs were made in order to analyse the expression of the beta-subunit of the Caenorhabditis elegans glutamate-gated Cl- channel (Glu-Cl) receptor. Southern blot analysis of the C. elegans cosmid C35E8 identified a 4kbp EcoRI fragment which contained the 5' portion of the Glu-Cl beta coding sequence together with 5' flanking sequences. This was subcloned and used as the template for polymerase chain reaction (PCR) amplification of a DNA fragment encoding the first 24 amino acid residues of Glu-Cl beta together with 1.4 kbp of 5' genomic sequence. The fragment was subcloned into the LacZ expression vector pPD22.11 to form a translational reporter fusion. After injection of the construct into worms, six stably transformed lines were established and assayed for beta-galactosidase activity. Stained nuclei were observed in the pharyngeal metacorpus in adults and in all larval stages, and stained nuclei were seen in many embryos undergoing morphogenesis. Additional stained nuclei towards the terminal bulb of the pharynx were observed in larval stages. These results provide further evidence that the Glu-Cl receptor mediates the glutamatergic inhibition of pharyngeal muscle via the M3 motor neurone and point to inhibition of pharyngeal pumping as a major mode of action for avermectins.


2014 ◽  
Vol 206 (4) ◽  
pp. 559-572 ◽  
Author(s):  
Isabelle Fernandes ◽  
Frieder Schöck

Mutations in nebulin, a giant muscle protein with 185 actin-binding nebulin repeats, are the major cause of nemaline myopathy in humans. Nebulin sets actin thin filament length in sarcomeres, potentially by stabilizing thin filaments in the I-band, where nebulin and thin filaments coalign. However, the precise role of nebulin in setting thin filament length and its other functions in regulating power output are unknown. Here, we show that Lasp, the only member of the nebulin family in Drosophila melanogaster, acts at two distinct sites in the sarcomere and controls thin filament length with just two nebulin repeats. We found that Lasp localizes to the Z-disc edges to control I-band architecture and also localizes at the A-band, where it interacts with both actin and myosin to set proper filament spacing. Furthermore, introducing a single amino acid change into the two nebulin repeats of Lasp demonstrated different roles for each domain and established Lasp as a suitable system for studying nebulin repeat function.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paloma García-Casas ◽  
Pilar Alvarez-Illera ◽  
Eva Gómez-Orte ◽  
Juan Cabello ◽  
Rosalba I. Fonteriz ◽  
...  

We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.


1998 ◽  
Vol 143 (5) ◽  
pp. 1201-1213 ◽  
Author(s):  
Kristen McArdle ◽  
Taylor StC. Allen ◽  
Elizabeth A. Bucher

We have investigated the functions of troponin T (CeTnT-1) in Caenorhabditis elegans embryonic body wall muscle. TnT tethers troponin I (TnI) and troponin C (TnC) to the thin filament via tropomyosin (Tm), and TnT/Tm regulates the activation and inhibition of myosin-actin interaction in response to changes in intracellular [Ca2+]. Loss of CeTnT-1 function causes aberrant muscle trembling and tearing of muscle cells from their exoskeletal attachment sites (Myers, C.D., P.-Y. Goh, T. StC. Allen, E.A. Bucher, and T. Bogaert. 1996. J. Cell Biol. 132:1061–1077). We hypothesized that muscle tearing is a consequence of excessive force generation resulting from defective tethering of Tn complex proteins. Biochemical studies suggest that such defective tethering would result in either (a) Ca2+-independent activation, due to lack of Tn complex binding and consequent lack of inhibition, or (b) delayed reestablishment of TnI/TnC binding to the thin filament after Ca2+ activation and consequent abnormal duration of force. Analyses of animals doubly mutant for CeTnT-1 and for genes required for Ca2+ signaling support that CeTnT-1 phenotypes are dependent on Ca2+ signaling, thus supporting the second model and providing new in vivo evidence that full inhibition of thin filaments in low [Ca2+] does not require TnT.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170372 ◽  
Author(s):  
Emma K. Towlson ◽  
Petra E. Vértes ◽  
Gang Yan ◽  
Yee Lian Chew ◽  
Denise S. Walker ◽  
...  

Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure–function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550 , 519–523. ( doi:10.1038/nature24056 )), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


2001 ◽  
Vol 153 (6) ◽  
pp. 1227-1238 ◽  
Author(s):  
Mary Howe ◽  
Kent L. McDonald ◽  
Donna G. Albertson ◽  
Barbara J. Meyer

Macromolecular structures called kinetochores attach and move chromosomes within the spindle during chromosome segregation. Using electron microscopy, we identified a structure on the holocentric mitotic and meiotic chromosomes of Caenorhabditis elegans that resembles the mammalian kinetochore. This structure faces the poles on mitotic chromosomes but encircles meiotic chromosomes. Worm kinetochores require the evolutionarily conserved HIM-10 protein for their structure and function. HIM-10 localizes to the kinetochores and mediates attachment of chromosomes to the spindle. Depletion of HIM-10 disrupts kinetochore structure, causes a failure of bipolar spindle attachment, and results in chromosome nondisjunction. HIM-10 is related to the Nuf2 kinetochore proteins conserved from yeast to humans. Thus, the extended kinetochores characteristic of C. elegans holocentric chromosomes provide a guide to the structure, molecular architecture, and function of conventional kinetochores.


2020 ◽  
pp. dmm.046631
Author(s):  
Karen I. Lange ◽  
Sofia Tsiropoulou ◽  
Katarzyna Kucharska ◽  
Oliver E. Blacque

Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have employed a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S, G155S) in B9D2/mksr-2 associated with Joubert Syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment, and regulates the cilium's molecular composition and sensory/signaling functions. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and TMEM216/MKS-2. Together, these data establish C. elegans as a paradigm for interpreting JBTS mutations, and provide further insight into MKS module organisation.


1985 ◽  
Vol 101 (4) ◽  
pp. 1532-1549 ◽  
Author(s):  
G R Francis ◽  
R H Waterston

The body wall muscle cells of Caenorhabditis elegans contain an obliquely striated myofibrillar lattice that is associated with the cell membrane through two structures: an M-line analogue in the A-band and a Z-disc analogue, or dense-body, in the I-band. By using a fraction enriched in these structures as an immunogen for hybridoma production, we prepared monoclonal antibodies that identify four components of the I-band as determined by immunofluorescence and Western transfer analysis. A major constituent of the dense-body is a 107,000-D polypeptide that shares determinants with vertebrate alpha-actinin. A second dense-body constituent is a more basic and antigenically distinct 107,000-D polypeptide that is localized to a narrow domain of the dense-body at or subjacent to the plasma membrane. This basic dense-body polypeptide is also found at certain cell boundaries where thin filaments in half-bands terminate at membrane-associated structures termed attachment plaques. A third, unidentified antigen is also found closely apposed to the cell membrane in regions of not only the dense-body and attachment plaque, but also the M-line analogue. Finally, a fourth high molecular weight antigen, composed of two polypeptides of approximately 400,000-D, is localized to the I-band regions surrounding the dense-body. The attachment of the dense-body to the cell surface and the differential localization of the dense-body-associated antigens suggest a model for their organization in which the unidentified antigen is a cell surface component, and the two 107,000-D polypeptides define different cytoplasmic domains of the dense-body.


Sign in / Sign up

Export Citation Format

Share Document