scholarly journals Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes.

1995 ◽  
Vol 130 (5) ◽  
pp. 1081-1091 ◽  
Author(s):  
B J Marsh ◽  
R A Alm ◽  
S R McIntosh ◽  
D E James

Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH2- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.

1995 ◽  
Vol 129 (4) ◽  
pp. 999-1006 ◽  
Author(s):  
K V Kandror ◽  
J M Stephens ◽  
P F Pilch

Native rat adipocytes and the mouse adipocyte cell line, 3T3-L1, possess transport vesicles of apparently uniform composition and size which translocate the tissue-specific glucose transporter isoform, GLUT4, from an intracellular pool to the cell surface in an insulin-sensitive fashion. Caveolin, the presumed structural protein of caveolae, has also been proposed to function in vesicular transport. Thus, we studied the expression and subcellular distribution of caveolin in adipocytes. We found that rat fat cells express the highest level of caveolin protein of any tissue studied, and caveolin is also expressed at high levels in cardiac muscle, another tissue possessing insulin responsive GLUT4 translocation. Both proteins are absent from 3T3-L1 fibroblasts and undergo a dramatic coordinate increase in expression upon differentiation of these cells into adipocytes. However, unlike GLUT4 in rat adipocytes not exposed to insulin, the majority of caveolin is present in the plasma membrane. In native rat adipocytes, intracellular GLUT4 and caveolin reside in vesicles practically indistinguishable by their size and buoyant density in sucrose gradients, and both proteins show insulin-dependent translocation to the cell surface. However, by immunoadsorption of GLUT4-containing vesicles with anti-GLUT4 antibody, we show that these vesicles have no detectable caveolin, and therefore, this protein is present in a distinct vesicle population. Thus, caveolin has no direct structural relation to the organization of the intracellular glucose transporting machinery in fat cells.


1994 ◽  
Vol 77 (4) ◽  
pp. 1597-1601 ◽  
Author(s):  
J. Gao ◽  
J. Ren ◽  
E. A. Gulve ◽  
J. O. Holloszy

The maximal effects of insulin and muscle contractions on glucose transport are additive. GLUT-4 is the major glucose transporter isoform expressed in skeletal muscle. Muscle contraction and insulin each induce translocation of GLUT-4 from intracellular sites into the plasma membrane. The purpose of this study was to test the hypothesis that the incremental effect of contractions and insulin on glucose transport is mediated by additivity of the maximal effects of these stimuli on GLUT-4 translocation into the sarcolemma. Anesthetized rats were given insulin by intravenous infusion to raise plasma insulin to 2,635 +/- 638 microU/ml. The gastrocnemius-plantaris-soleus group was stimulated to contract via the sciatic nerve by using a protocol that maximally activates glucose transport. After treatment with insulin, contractions, or insulin plus contractions or no treatment, the gastrocnemius-plantaris-soleus muscle group was dissected out and was subjected to subcellular fractionation to separate the plasma membrane and intracellular membrane fractions. Insulin induced a 70% increase and contractions induced a 113% increase in the GLUT-4 content of the plasma membrane fraction. The effects of insulin and contractions were additive, as evidenced by a 185% increase in the GLUT-4 content of the sarcolemmal fraction. This finding provides evidence that the incremental effect of maximally effective insulin and contractile stimuli on glucose transport is mediated by additivity of their effects on GLUT-4 translocation into the sarcolemma.


Endocrinology ◽  
2002 ◽  
Vol 143 (11) ◽  
pp. 4295-4303 ◽  
Author(s):  
M. Lucia Gavete ◽  
Maria Agote ◽  
M. Angeles Martin ◽  
Carmen Alvarez ◽  
Fernando Escriva

Abstract The high energy demands of myocardium are met through the metabolism of lipids and glucose. Importantly, enhanced glucose utilization rates are crucial adaptations of the cardiac cell to some pathological conditions, such as hypertrophy and ischemia, but the effects of undernutrition on heart glucose metabolism are unknown. Our previous studies have shown that undernutrition increases insulin-induced glucose uptake by skeletal muscle. Consequently, we considered the possibility of a similar adaptation in the heart. With this aim, undernourished rats both in the basal state and after euglycemic hyperinsulinemic clamps were used to determine the following parameters in myocardium: glucose uptake, glucose transporter (GLUT) content, and some key components of the insulin signaling cascade. Heart membranes were prepared by subcellular fractionation in sucrose gradients. Although GLUT-4, GLUT-1, and GLUT-3 proteins and GLUT-4/1 mRNAs were reduced by undernutrition, basal and insulin-stimulated 2-deoxyglucose uptake were significantly enhanced. Phosphoinositol 3-kinase activity remained greater than control values in both conditions. The abundance of p85α and p85β regulatory subunits of phosphoinositol 3-kinase was increased as was phospho-Akt during hyperinsulinemia. These changes seem to improve the insulin stimulus of GLUT-1 translocation, as its content was increased at the surface membrane. Such adaptations associated with undernutrition must be crucial to improvement of cardiac glucose uptake.


1996 ◽  
Vol 134 (3) ◽  
pp. 625-635 ◽  
Author(s):  
S Martin ◽  
J Tellam ◽  
C Livingstone ◽  
J W Slot ◽  
G W Gould ◽  
...  

Insulin stimulates glucose transport in adipocytes by translocation of the glucose transporter (GLUT-4) from an intracellular site to the cell surface. We have characterized different synaptobrevin/vesicle-associated membrane protein (VAMP) homologues in adipocytes and studied their intracellular distribution with respect to GLUT-4. VAMP-1, VAMP-2, and cellubrevin cDNAs were isolated from a 3T3-L1 adipocyte expression library. VAMP-2 and cellubrevin were: (a) the most abundant isoforms in adipocytes, (b) detectable in all insulin responsive tissues, (c) translocated to the cell surface in response to insulin, and (d) found in immunoadsorbed GLUT-4 vesicles. To further define their intracellular distribution, 3T3-L1 adipocytes were incubated with a transferrin/HRP conjugate (Tf/HRP) and endosomes ablated following addition of DAB and H2O2. While this resulted in ablation of > 90% of the transferrin receptor (TfR) and cellubrevin found in intracellular membranes, 60% of GLUT-4 and 90% of VAMP-2 was not ablated. Immuno-EM on intracellular vesicles from adipocytes revealed that VAMP-2 was colocalized with GLUT-4, whereas only partial colocalization was observed between GLUT-4 and cellubrevin. These studies show that two different v-SNAREs, cellubrevin and VAMP-2, are partially segregated in different intracellular compartments in adipocytes, implying that they may define separate classes of secretory vesicles in these cells. We conclude that a proportion of GLUT-4 is found in recycling endosomes in nonstimulated adipocytes together with cellubrevin and the transferrin receptor. In addition, GLUT-4 and VAMP-2 are selectively enriched in a postendocytic compartment. Further study is required to elucidate the function of this latter compartment in insulin-responsive cells.


1989 ◽  
Vol 9 (8) ◽  
pp. 3155-3165 ◽  
Author(s):  
P N Lipke ◽  
D Wojciechowicz ◽  
J Kurjan

We have cloned the alpha-agglutinin structural gene, AG alpha 1, by the isolation of alpha-specific agglutination-defective mutants, followed by isolation of a complementing plasmid. Independently isolated alpha-specific agglutination-defective mutations were in a single complementation group, consistent with biochemical results indicating that the alpha-agglutinin is composed of a single polypeptide. Mapping results suggested that the complementation group identified by these mutants is allelic to the ag alpha 1 mutation identified previously. Expression of AG alpha 1 RNA was alpha specific and inducible by a-factor. Sequences similar to the consensus sequences for positive control by MAT alpha 1 and pheromone induction were found upstream of the AG alpha 1 initiation codon. The AG alpha 1 gene could encode a 650-amino-acid protein with a putative signal sequence, 12 possible N-glycosylation sites, and a high proportion of serine and threonine residues, all of which are features expected for the alpha-agglutinin sequence. Disruption of the AG alpha 1 gene resulted in failure to express alpha-agglutinin and loss of cellular agglutinability in alpha cells. An Escherichia coli fusion protein containing 229 amino acids of the AG alpha 1 sequence was recognized by an anti-alpha-agglutinin antibody. In addition, the ability of this antibody to inhibit agglutination was prevented by this fusion protein. These results indicate that AG alpha 1 encodes alpha-agglutinin. Features of the AG alpha 1 gene product suggest that the amino-terminal half of the protein contains the a-agglutinin binding domain and that the carboxy-terminal half contains a cell surface localization domain, possibly including a glycosyl phosphatidylinositol anchor.


1992 ◽  
Vol 117 (4) ◽  
pp. 729-743 ◽  
Author(s):  
RC Piper ◽  
C Tai ◽  
JW Slot ◽  
CS Hahn ◽  
CM Rice ◽  
...  

GLUT-4 is the major facilitative glucose transporter isoform in tissues that exhibit insulin-stimulated glucose transport. Insulin regulates glucose transport by the rapid translocation of GLUT-4 from an intracellular compartment to the plasma membrane. A critical feature of this process is the efficient exclusion of GLUT-4 from the plasma membrane in the absence of insulin. To identify the amino acid domains of GLUT-4 which confer intracellular sequestration, we analyzed the subcellular distribution of chimeric glucose transporters comprised of GLUT-4 and a homologous isoform, GLUT-1, which is found predominantly at the cell surface. These chimeric transporters were transiently expressed in CHO cells using a double subgenomic recombinant Sindbis virus vector. We have found that wild-type GLUT-4 is targeted to an intracellular compartment in CHO cells which is morphologically similar to that observed in adipocytes and muscle cells. Sindbis virus-produced GLUT-1 was predominantly expressed at the cell surface. Substitution of the GLUT-4 amino-terminal region with that of GLUT-1 abolished the efficient intracellular sequestration of GLUT-4. Conversely, substitution of the NH2 terminus of GLUT-1 with that of GLUT-4 resulted in marked intracellular sequestration of GLUT-1. These data indicate that the NH2-terminus of GLUT-4 is both necessary and sufficient for intracellular sequestration.


1998 ◽  
Vol 66 (4) ◽  
pp. 1521-1526 ◽  
Author(s):  
Beinan Wang ◽  
Ellen Kraig ◽  
David Kolodrubetz

ABSTRACT Strains of the periodontal pathogen Campylobacter rectus express a 150- to 166-kDa protein on their cell surface. This protein forms a paracrystalline lattice, called the surface layer (S-layer), on the outer membrane of this gram-negative bacterium. To initiate a genetic analysis of the function of the S-layer in the pathogenesis of C. rectus, we have cloned and characterized its gene. The S-layer gene (crs) from C. rectus314 encodes a cell surface protein which does not have a cleaved signal peptide at its amino terminus. Although the amino acid sequence deduced from the crs gene has 50% identity with the amino-terminal 30 amino acids of the four S-layer proteins from Campylobacter fetus, the similarity decreases to less than 16% over the rest of the protein. Thus, the crs gene from C. rectus encodes a novel S-layer protein whose precise role in pathogenesis may differ from that of S-layer proteins from other organisms. Southern and Northern blot analyses with probes from different segments of the crs gene indicate that the S-layer gene is a single-copy, monocistronic gene in C. rectus. RNA end mapping and sequence analyses were used to define the crs promoter; there is an exact match to theEscherichia coli −10 promoter consensus sequence but only a weak match to the −35 consensus element. Southern blots of DNA from another strain of C. rectus, ATCC 33238, demonstrated that the crs gene is also present in that strain but that there are numerous restriction fragment length polymorphisms in the second half of the gene. This finding suggests that the carboxy halves of the S-layer proteins from strains 314 and 33238 differ. It remains to be determined whether the diversities in sequence are reflected in functional or antigenic differences important for the pathogenesis of different C. rectus isolates.


2002 ◽  
Vol 115 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Hadi Al-Hasani ◽  
Raghu K. Kunamneni ◽  
Kevin Dawson ◽  
Cynthia S. Hinck ◽  
Dirk Müller-Wieland ◽  
...  

In insulin target cells, the predominantly expressed glucose transporter isoform GLUT4 recycles between distinct intracellular compartments and the plasma membrane. To characterize putative targeting signals within GLUT4 in a physiologically relevant cell type, we have analyzed the trafficking of hemagglutinin (HA)-epitope-tagged GLUT4 mutants in transiently transfected primary rat adipose cells. Mutation of the C-terminal dileucine motif (LL489/90) did not affect the cell-surface expression of HA-GLUT4. However, mutation of the N-terminal phenylalanine-based targeting sequence (F5) resulted in substantial increases, whereas deletion of 37 or 28 of the 44 C-terminal residues led to substantial decreases in cell-surface HA-GLUT4 in both the basal and insulin-stimulated states. Studies with wortmannin and coexpression of a dominant-negative dynamin GTPase mutant indicate that these effects appear to be primarily due to decreases and increases, respectively, in the rate of endocytosis. Yeast two-hybrid analyses revealed that the N-terminal phenylalanine-based targeting signal in GLUT4 constitutes a binding site for medium chain adaptins μ1, μ2, and μ3A, implicating a role of this motif in the targeting of GLUT4 to clathrin-coated vesicles.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1936
Author(s):  
Kobina Essandoh ◽  
Shan Deng ◽  
Xiaohong Wang ◽  
Yutian Li ◽  
Qianqian Li ◽  
...  

Cardiac cells can adapt to pathological stress-induced energy crisis by shifting from fatty acid oxidation to glycolysis. However, the use of glucose-insulin-potassium (GIK) solution in patients undergoing cardiac surgery does not alleviate ischemia/reperfusion (I/R)-induced energy shortage. This indicates that insulin-mediated translocation of glucose transporter-4 (Glut-4) is impaired in ischemic hearts. Indeed, cardiac myocytes contain two intracellular populations of Glut-4: an insulin-dependent non-endosomal pool (also referred to as Glut-4 storage vesicles, GSVs) and an insulin-independent endosomal pool. Tumor susceptibility gene 101 (Tsg101) has been implicated in the endosomal recycling of membrane proteins. In this study, we aimed to examine whether Tsg101 regulated the sorting and re-distribution of Glut-4 to the sarcolemma membrane of cardiomyocytes under basal and ischemic conditions, using gain- and loss-of-function approaches. Forced overexpression of Tsg101 in mouse hearts and isolated cardiomyocytes could promote Glut-4 re-distribution to the sarcolemma, leading to enhanced glucose entry and adenosine triphosphate (ATP) generation in I/R hearts which in turn, attenuation of I/R-induced cardiac dysfunction. Conversely, knockdown of Tsg101 in cardiac myocytes exhibited opposite effects. Mechanistically, we identified that Tsg101 could interact and co-localize with Glut-4 in the sarcolemma membrane of cardiomyocytes. Our findings define Tsg101 as a novel regulator of cardiac Glut-4 trafficking, which may provide a new therapeutic strategy for the treatment of ischemic heart disease.


Sign in / Sign up

Export Citation Format

Share Document