scholarly journals Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth.

1995 ◽  
Vol 131 (4) ◽  
pp. 1083-1094 ◽  
Author(s):  
S Arber ◽  
P Caroni

Extracellular matrix (ECM) molecules are involved in multiple aspects of cell-to-cell signaling during development and in the adult. In nervous system development, specific recognition processes, e.g., during axonal pathfinding and synaptogenesis involve modulation and signaling by ECM components. Much less is known about their presence and possible roles in the adult nervous system. We now report that thrombospondin-4 (TSP-4), a recently discovered member of the TSP gene family is expressed by neurons, promotes neurite outgrowth, and accumulates at the neuromuscular junction and at certain synapse-rich structures in the adult. To search for muscle genes that may be involved in neuromuscular signaling, we isolated cDNAs induced in adult skeletal muscle by denervation. One of these cDNAs coded for the rat homologue of TSP-4. In skeletal muscle, it was expressed by muscle interstitial cells. The transcript was further detected in heart and in the developing and adult nervous system, where it was expressed by a wide range of neurons. An antiserum to the unique carboxyl-terminal end of the protein allowed to specifically detect TSP-4 in transfected cells in vitro and on cryostat sections in situ. TSP-4 associated with ECM structures in vitro and in vivo. In the adult, it accumulated at the neuromuscular junction and at synapse-rich structures in the cerebellum and retina. To analyze possible activities of TSP-4 towards neurons, we carried out coculture experiments with stably transfected COS cells and motor, sensory, or retina neurons. These experiments revealed that TSP-4 was a preferred substrate for these neurons, and promoted neurite outgrowth. The results establish TSP-4 as a neuronal ECM protein associated with certain synapse-rich structures in the adult. Its activity towards embryonic neurons in vitro and its distribution in vivo suggest that it may be involved in local signaling in the developing and adult nervous system.

2000 ◽  
Vol 11 (11) ◽  
pp. 3805-3817 ◽  
Author(s):  
Aikaterini Kontrogianni-Konstantopoulos ◽  
Shu-Ching Huang ◽  
Edward J. Benz

The ∼80-kDa erythroid 4.1R protein is a major component of the erythrocyte cytoskeleton, where it links transmembrane proteins to the underlying spectrin/actin complexes. A diverse collection of 4.1R isoforms has been described in nonerythroid cells, ranging from ∼30 to ∼210 kDa. In the current study, we identified the number and primary structure of 4.1R isoforms expressed in adult skeletal muscle and characterized the localization patterns of 4.1R message and protein. Skeletal muscle 4.1R appears to originate solely from the upstream translation initiation codon (AUG-1) residing in exon 2′. Combinations of alternatively spliced downstream exons generate an array of distinct 4.1R spliceoforms. Two major isoform classes of ∼105/110 and ∼135 kDa are present in muscle homogenates. 4.1R transcripts are distributed in highly ordered signal stripes, whereas 4.1R protein(s) decorate the sarcoplasm in transverse striations that are in register with A-bands. An ∼105/110-kDa 4.1R isoform appears to occur in vivo in a supramolecular complex with major sarcomeric proteins, including myosin, α-actin, and α-tropomyosin. In vitro binding assays showed that 4.1R may interact directly with the aforementioned contractile proteins through its 10-kDa domain. All of these observations suggest a topological model whereby 4.1R may play a scaffolding role by anchoring the actomyosin myofilaments and possibly modulating their displacements during contraction/relaxation.


2015 ◽  
Vol 13 (1) ◽  
pp. nrs.13005 ◽  
Author(s):  
James G. MacKrell ◽  
Benjamin C. Yaden ◽  
Heather Bullock ◽  
Keyue Chen ◽  
Pamela Shetler ◽  
...  

The high regenerative capacity of adult skeletal muscle relies on a self-renewing depot of adult stem cells, termed muscle satellite cells (MSCs). Androgens, known mediators of overall body composition and specifically skeletal muscle mass, have been shown to regulate MSCs. The possible overlapping function of androgen regulation of muscle growth and MSC activation has not been carefully investigated with regards to muscle regeneration. Therefore, the aim of this study was to examine coinciding androgen-mediated genetic changes in an in vitro MSC model and clinically relevant in vivo models. A gene signature was established via microarray analysis for androgen-mediated MSC engagement and highlighted several markers including follistatin (FST), IGF-1, C-X-C chemokine receptor 4 (CXCR4), hepatocyte growth factor (HGF) and glucocorticoid receptor (GR/Nr3c1). In an in vivo muscle atrophy model, androgen re-supplementation significantly increased muscle size and expression of IGF-1, FST, and HGF, while significantly decreasing expression of GR. Biphasic gene expression profiles over the 7-day re-supplementation period identifed temporal androgen regulation of molecular targets involved in satellite cell engagement into myogenesis. In a muscle injury model, removal of androgens resulted in delayed muscle recovery and regeneration. Modifications in the androgen signaling gene signature, along with reduced Pax7 and MyoD expression, suggested that limited MSC activation and increased inflammation contributed to the delayed regeneration. However, enhanced MSC activation in the androgen-deplete mouse injury model was driven by an androgen receptor (AR) agonist. These results provide novel in vitro and in vivo evidence describing molecular targets of androgen signaling, while also increasing support for translational use of AR agonists in skeletal muscle recovery and regeneration.


2021 ◽  
Vol 118 (37) ◽  
pp. e2021013118 ◽  
Author(s):  
Sebastian Mathes ◽  
Alexandra Fahrner ◽  
Umesh Ghoshdastider ◽  
Hannes A. Rüdiger ◽  
Michael Leunig ◽  
...  

Aged skeletal muscle is markedly affected by fatty muscle infiltration, and strategies to reduce the occurrence of intramuscular adipocytes are urgently needed. Here, we show that fibroblast growth factor-2 (FGF-2) not only stimulates muscle growth but also promotes intramuscular adipogenesis. Using multiple screening assays upstream and downstream of microRNA (miR)-29a signaling, we located the secreted protein and adipogenic inhibitor SPARC to an FGF-2 signaling pathway that is conserved between skeletal muscle cells from mice and humans and that is activated in skeletal muscle of aged mice and humans. FGF-2 induces the miR-29a/SPARC axis through transcriptional activation of FRA-1, which binds and activates an evolutionary conserved AP-1 site element proximal in the miR-29a promoter. Genetic deletions in muscle cells and adeno-associated virus–mediated overexpression of FGF-2 or SPARC in mouse skeletal muscle revealed that this axis regulates differentiation of fibro/adipogenic progenitors in vitro and intramuscular adipose tissue (IMAT) formation in vivo. Skeletal muscle from human donors aged >75 y versus <55 y showed activation of FGF-2–dependent signaling and increased IMAT. Thus, our data highlights a disparate role of FGF-2 in adult skeletal muscle and reveals a pathway to combat fat accumulation in aged human skeletal muscle.


2019 ◽  
Vol 2 (3) ◽  
pp. e201900437 ◽  
Author(s):  
Milica Marinkovic ◽  
Claudia Fuoco ◽  
Francesca Sacco ◽  
Andrea Cerquone Perpetuini ◽  
Giulio Giuliani ◽  
...  

Fibro-adipogenic progenitors (FAPs) promote satellite cell differentiation in adult skeletal muscle regeneration. However, in pathological conditions, FAPs are responsible for fibrosis and fatty infiltrations. Here we show that the NOTCH pathway negatively modulates FAP differentiation both in vitro and in vivo. However, FAPs isolated from young dystrophin-deficient mdx mice are insensitive to this control mechanism. An unbiased mass spectrometry–based proteomic analysis of FAPs from muscles of wild-type and mdx mice suggested that the synergistic cooperation between NOTCH and inflammatory signals controls FAP differentiation. Remarkably, we demonstrated that factors released by hematopoietic cells restore the sensitivity to NOTCH adipogenic inhibition in mdx FAPs. These results offer a basis for rationalizing pathological ectopic fat infiltrations in skeletal muscle and may suggest new therapeutic strategies to mitigate the detrimental effects of fat depositions in muscles of dystrophic patients.


2002 ◽  
Vol 115 (13) ◽  
pp. 2701-2712 ◽  
Author(s):  
Chetana Sachidanandan ◽  
Ramkumar Sambasivan ◽  
Jyotsna Dhawan

Myogenic precursor cells known as satellite cells persist in adult skeletal muscle and are responsible for its ability to regenerate after injury. Quiescent satellite cells are activated by signals emanating from damaged muscle. Here we describe the rapid activation of two genes in response to muscle injury; these transcripts encode LPS-inducible CXC chemokine (LIX), a neutrophil chemoattractant, and Tristetraprolin (TTP), an RNA-binding protein implicated in the regulation of cytokine expression. Using a synchronized cell culture model we show that C2C12 myoblasts arrested in G0 exhibit some molecular attributes of satellite cells in vivo: suppression of MyoD and Myf5 expression during G0 and their reactivation in G1. Synchronization also revealed cell cycle dependent expression of CD34, M-cadherin, HGF and PEA3, genes implicated in satellite cell biology. To identify other genes induced in synchronized C2C12 myoblasts we used differential display PCR and isolated LIX and TTP cDNAs. Both LIX and TTP mRNAs are short-lived, encode molecules implicated in inflammation and are transiently induced during growth activation in vitro. Further, LIX and TTP are rapidly induced in response to muscle damage in vivo. TTP expression precedes that of MyoD and is detected 30 minutes after injury. The spatial distribution of LIX and TTP transcripts in injured muscle suggests expression by satellite cells. Our studies suggest that in addition to generating new cells for repair, activated satellite cells may be a source of signaling molecules involved in tissue remodeling during regeneration.


Biology ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 52 ◽  
Author(s):  
George A. McCanney ◽  
Susan L. Lindsay ◽  
Michael A. McGrath ◽  
Hugh J. Willison ◽  
Claire Moss ◽  
...  

In vitro cell-based assays have been fundamental in modern drug discovery and have led to the identification of novel therapeutics. We have developed complex mixed central nervous system (CNS) cultures, which recapitulate the normal process of myelination over time and allow the study of several parameters associated with CNS damage, both during development and after injury or disease. In particular, they have been used as a reliable screen to identify drug candidates that may promote (re)myelination and/or neurite outgrowth. Previously, using these cultures, we demonstrated that a panel of low sulphated heparin mimetics, with structures similar to heparan sulphates (HSs), can reduce astrogliosis, and promote myelination and neurite outgrowth. HSs reside in either the extracellular matrix or on the surface of cells and are thought to modulate cell signaling by both sequestering ligands, and acting as co-factors in the formation of ligand-receptor complexes. In this study, we have used these cultures as a screen to address the repair potential of numerous other commercially available sulphated glycomolecules, namely heparosans, ulvans, and fucoidans. These compounds are all known to have certain characteristics that mimic cellular glycosaminoglycans, similar to heparin mimetics. We show that the N-sulphated heparosans promoted myelination. However, O-sulphated heparosans did not affect myelination but promoted neurite outgrowth, indicating the importance of structure in HS function. Moreover, neither highly sulphated ulvans nor fucoidans had any effect on remyelination but CX-01, a low sulphated porcine intestinal heparin, promoted remyelination in vitro. These data illustrate the use of myelinating cultures as a screen and demonstrate the potential of heparin mimetics as CNS therapeutics.


2008 ◽  
Vol 188 (4) ◽  
pp. 347-358 ◽  
Author(s):  
K.M. Abberton ◽  
S.K. Bortolotto ◽  
A.A. Woods ◽  
M. Findlay ◽  
W.A. Morrison ◽  
...  

2000 ◽  
Vol 20 (20) ◽  
pp. 7706-7715 ◽  
Author(s):  
S. Harroch ◽  
M. Palmeri ◽  
J. Rosenbluth ◽  
A. Custer ◽  
M. Okigaki ◽  
...  

ABSTRACT The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPβ (RPTPβ; also known as PTPζ) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPβ play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPβ. RPTPβ-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPβ is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPβ-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPβ-deficient mice. The normal development of neurons and glia in RPTPβ-deficient mice demonstrates that RPTPβ function is not necessary for these processes in vivo or that loss of RPTPβ can be compensated for by other PTPs expressed in the nervous system.


2021 ◽  
Vol 118 (31) ◽  
pp. e2100862118
Author(s):  
Dhananjay Yellajoshyula ◽  
Samuel S. Pappas ◽  
Abigail E. Rogers ◽  
Biswa Choudhury ◽  
Xylena Reed ◽  
...  

Mechanisms controlling myelination during central nervous system (CNS) maturation play a pivotal role in the development and refinement of CNS circuits. The transcription factor THAP1 is essential for timing the inception of myelination during CNS maturation through a cell-autonomous role in the oligodendrocyte lineage. Here, we demonstrate that THAP1 modulates the extracellular matrix (ECM) composition by regulating glycosaminoglycan (GAG) catabolism within oligodendrocyte progenitor cells (OPCs). Thap1−/− OPCs accumulate and secrete excess GAGs, inhibiting their maturation through an autoinhibitory mechanism. THAP1 controls GAG metabolism by binding to and regulating the GusB gene encoding β-glucuronidase, a GAG-catabolic lysosomal enzyme. Applying GAG-degrading enzymes or overexpressing β-glucuronidase rescues Thap1−/− OL maturation deficits in vitro and in vivo. Our studies establish lysosomal GAG catabolism within OPCs as a critical mechanism regulating oligodendrocyte development.


2017 ◽  
Author(s):  
Milica Marinkovic ◽  
Francesca Sacco ◽  
Filomena Spada ◽  
Lucia Lisa Petrilli ◽  
Claudia Fuoco ◽  
...  

SummaryFibro adipogenic progenitors (FAPs) promote satellite cell differentiation in adult skeletal muscle regeneration. However, in pathological conditions, FAPs are responsible for fibrosis and fat infiltrations. Here we show that the NOTCH pathway negatively modulates FAP differentiation both in vitro and in vivo. However, FAPs isolated from young dystrophin-deficient mdx mice are insensitive to this control mechanism. Nonetheless, factors released by hematopoietic cells restore the sensitivity to NOTCH adipogenic inhibition. An unbiased mass spectrometry-based proteomic analysis of FAPs from muscles of wild type and mdx mice, revealed that the synergistic cooperation between NOTCH and inflammatory signals controls FAP differentiation. These results offer a basis for rationalizing the pathological outcomes of fat infiltrations in skeletal muscle and may suggest new therapeutic strategies to mitigate the detrimental effects of fatty depositions in muscles of dystrophic patients.HighlightsSingle-cell mass cytometry reveals that wt and mdx FAPs are in different cell states.Activation of the NOTCH signaling pathway negatively regulates adipogenesis of wt but not mdx FAPs.Deep proteomics suggests a mechanism explaining the different sensitivity of mdx- FAPs to NOTCH.TNF-a stimulation restores the anti-adipogenic effect of NOTCH in mdx FAPs.


Sign in / Sign up

Export Citation Format

Share Document