scholarly journals Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity.

1996 ◽  
Vol 132 (6) ◽  
pp. 1177-1188 ◽  
Author(s):  
P Koolwijk ◽  
M G van Erck ◽  
W J de Vree ◽  
M A Vermeer ◽  
H A Weich ◽  
...  

In angiogenesis associated with tissue repair and disease, fibrin and inflammatory mediators are often involved. We have used three-dimensional fibrin matrices to investigate the humoral requirements of human microvascular endothelial cells (hMVEC) to form capillary-like tubular structures. bFGF and VEGF165 were unable to induce tubular structures by themselves. Simultaneous addition of one or both of these factors with TNFalpha induced outgrowth of tubules, the effect being the strongest when bFGF, VEGF165, and TNFalpha were added simultaneously. Exogenously added u-PA, but not its nonproteolytic amino-terminal fragment, could replace TNFalpha, suggesting that TNFalpha-induced u-PA synthesis was involved. Soluble u-PA receptor (u-PAR) or antibodies that inhibited u-PA activity prevented the formation of tubular structures by 59-99%. epsilon-ACA and trasylol which inhibit the formation and activity of plasmin reduced the extent of tube formation by 71-95%. TNFalpha or u-PA did not induce tubular structures without additional growth factors. bFGF and VEGF165 enhanced of the u-PAR by 72 and 46%, but TNFalpha itself also increased u-PAR in hMVEC by 30%. Induction of mitogenesis was not the major contribution of bFGF and VEGF165 because the cell number did not change significantly in the presence of TNFalpha, and tyrphostin A47, which inhibited mitosis completely, reduced the formation of tubular structures only by 28-36%. These data show that induction of cell-bound u-PA activity by the cytokine TNFalpha is required in addition to the angiogenic factors VEGF165 and/or bFGF to induce in vitro formation of capillary-like structures by hMVEC in fibrin matrices. These data may provide insight in the mechanism of angiogenesis as occurs in pathological conditions.

Author(s):  
Isabel Burghardt ◽  
Judith Johanna Schroeder ◽  
Tobias Weiss ◽  
Dorothee Gramatzki ◽  
Michael Weller

Abstract Purpose Members of the transforming growth factor (TGF)-β superfamily play a key role in the regulation of the malignant phenotype of glioblastoma by promoting invasiveness, angiogenesis, immunosuppression, and maintaining stem cell-like properties. Betaglycan, a TGF-β coreceptor also known as TGF-β receptor III (TβRIII), interacts with members of the TGF-β superfamily and acts as membrane-associated or shed molecule. Shed, soluble TβRIII (sTβRIII) is produced upon ectodomain cleavage of the membrane-bound form. Elucidating the role of TβRIII may improve our understanding of TGF-β pathway activity in glioblastoma Methods Protein levels of TβRIII were determined by immunohistochemical analyses and ex vivo single-cell gene expression profiling of glioblastoma tissue respectively. In vitro, TβRIII levels were assessed investigating long-term glioma cell lines (LTCs), cultured human brain-derived microvascular endothelial cells (hCMECs), glioblastoma-derived microvascular endothelial cells, and glioma-initiating cell lines (GICs). The impact of TβRIII on TGF-β signaling was investigated, and results were validated in a xenograft mouse glioma model Results Immunohistochemistry and ex vivo single-cell gene expression profiling of glioblastoma tissue showed that TβRIII was expressed in the tumor tissue, predominantly in the vascular compartment. We confirmed this pattern of TβRIII expression in vitro. Specifically, we detected sTβRIII in glioblastoma-derived microvascular endothelial cells. STβRIII facilitated TGF-β-induced Smad2 phosphorylation in vitro and overexpression of sTβRIII in a xenograft mouse glioma model led to increased levels of Smad2 phosphorylation, increased tumor volume, and decreased survival Conclusions These data shed light on the potential tumor-promoting role of extracellular shed TβRIII which may be released by glioblastoma endothelium with high sTβRIII levels.


2021 ◽  
Vol 18 ◽  
Author(s):  
Juxuan Ruan ◽  
Lei Wang ◽  
Jiheng Dai ◽  
Jing Li ◽  
Ning Wang ◽  
...  

Objective: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. Methods: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. Results: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB were increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. Conclusion: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xutong Li ◽  
Ye Zhang ◽  
Yong Wang ◽  
Dan Zhao ◽  
Chengcheng Sun ◽  
...  

Background. Ischemic stroke is a severe acute cerebrovascular disease which can be improved with neuroprotective therapies at an early stage. However, due to the lack of effective neuroprotective drugs, most stroke patients have varying degrees of long-term disability. In the present study, we investigated the role of exosomes derived from CXCR4-overexpressing BMSCs in restoring vascular function and neural repair after ischemic cerebral infarction. Methods. BMSCs were transfected with lentivirus encoded by CXCR4 (BMSCCXCR4). Exosomes derived from BMSCCXCR4 (ExoCXCR4) were isolated and characterized by transmission electron microscopy and dynamic light scattering. Western blot and qPCR were used to analyze the expression of CXCR4 in BMSCs and exosomes. The acute middle cerebral artery occlusion (MCAO) model was prepared, ExoCXCR4 were injected into the rats, and behavioral changes were analyzed. The role of ExoCXCR4 in promoting the proliferation and tube formation for angiogenesis and protecting brain endothelial cells was determined in vitro. Results. Compared with the control groups, the ExoCXCR4 group showed a significantly lower mNSS score at 7 d, 14 d, and 21 d after ischemia/reperfusion ( P < 0.05 ). The bEnd.3 cells in the ExoCXCR4 group have stronger proliferation ability than other groups ( P < 0.05 ), while the CXCR4 inhibitor can reduce this effect. Exosomes control (ExoCon) can significantly promote the migration of bEnd.3 cells ( P < 0.05 ), while there was no significant difference between the ExoCXCR4 and ExoCon groups ( P > 0.05 ). ExoCXCR4 can further promote the proliferation and tube formation for the angiogenesis of the endothelium compared with ExoCon group ( P < 0.05 ). In addition, cobalt chloride (COCl2) can increase the expression of β-catenin and Wnt-3, while ExoCon can reduce the expression of these proteins ( P < 0.05 ). ExoCXCR4 can further attenuate the activation of Wnt-3a/β-catenin pathway ( P < 0.05 ). Conclusions. In ischemia/reperfusion injury, ExoCXCR4 promoted the proliferation and tube formation of microvascular endothelial cells and play an antiapoptotic role via the Wnt-3a/β-catenin pathway.


2020 ◽  
Vol 40 (5) ◽  
pp. 1195-1206 ◽  
Author(s):  
Danting Cao ◽  
Andrew M. Mikosz ◽  
Alexandra J. Ringsby ◽  
Kelsey C. Anderson ◽  
Erica L. Beatman ◽  
...  

Objective: MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. Conclusions: miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.


1997 ◽  
Vol 122 (6) ◽  
pp. 1061-1066 ◽  
Author(s):  
Masayuki Isaji ◽  
Hiroshi Miyata ◽  
Yoshiyuki Ajisawa ◽  
Yasuo Takehana ◽  
Nagahisa Yoshimura

2020 ◽  
Vol 20 ◽  
Author(s):  
Laila Alhusban ◽  
Nehad M. Ayoub ◽  
Ahmed Alhusban

Aim: The aim of the current work is to assess the role of proBDNF/BDNF in the interaction between brain microvascular endothelial cells and MDA-MB-231 breast cancer cell line that has been consistently reported to cause brain metastasis. Background: Breast cancer brain metastasis (BM) is a significant health problem with limited therapeutic options. The development of BM is a multistep process that requires constant interaction with brain vasculature and development of tumor blood supply. The benefits of antiangiogenic modalities based on antagonizing vascular endothelial growth factor in breast cancer metastasis did not prove to be effective. Brain derived neurotrophic factor (BDNF) is a neurotrophin with reported angiogenic effect. There is a lack of data regarding the involvement of BDNF in metastatic breast cancer interaction with brain microvascular endothelial cells (HBEC-5i). Objectives: To determine the role of the pro form of BDNF in the interaction between MDA-MB-231 cells and brain endothelial cells. Methods: using an adaptive transfer design, the cross talk between HBEC-5i and MDA-MB-231 was investigated. HBEC-5i were treated with MDA-MB-231-conditioned media and the involvement of BDNF/proBDNF in the interaction was assessed using both release and inhibitor-based assays in migration and in vitro tube formation assay. Results: MDA-MB-231 and HBEC-5i released total BDNF (250 vs. 80 pg/ml, respectively). MDA-MB-231 conditioned media inhibited the migration of HBEC-5i by more than 80% (p<0.05) and tube formation by 75% (p<0.05). Neutralizing mature BDNF did not alter the MDA-MB-231 induced antiangiogenic effect which was completely blunted by antagonizing proBDNF. MDA-MB-231 released proBDNF (131.5 pg/ml) and more that 60% of total BDNF released was in the pro-form. Conclusion: proBDNF is a novel mediator of the breast cancer induced antiangiogenic effect in brain endothelial cells.


2018 ◽  
Vol 27 (5) ◽  
pp. 796-813 ◽  
Author(s):  
Katrin Brockhaus ◽  
Michael R. R. Böhm ◽  
Harutyun Melkonyan ◽  
Solon Thanos

Increased β-synuclein (Sncb) expression has been described in the aging visual system. Sncb functions as the physiological antagonist of α-synuclein (Snca), which is involved in the development of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases. However, the exact function of Sncb remains unknown. The aim of this study was to elucidate the age-dependent role of Sncb in brain microvascular endothelial cells (BMECs). BMECs were isolated from the cortices of 5- to 9-d-old Sprague-Dawley rats and were cultured with different concentrations of recombinant Sncb (rSncb) up to 72 h resembling to some degree age-related as well as pathophysiological conditions. Viability, apoptosis, expression levels of Snca, and the members of phospholipase D2 (Pld2)/ p53/ Mouse double minute 2 homolog (Mdm2)/p19(Arf) pathway, response in RAC-alpha serine/threonine-protein kinase (Akt), and stress-mediating factors such as heme oxygenase (decycling) 1 (Hmox) and Nicotinamide adenine dinucleotide phosphate oxygenase 4 (Nox4) were examined. rSncb-induced effects were confirmed through Sncb small interfering RNA (siRNA) knockdown in BMECs. We demonstrated that the viability decreases, while the rate of apoptosis underly dose-dependent alterations. For example, apoptosis increases in BMECs following the treatment with higher dosed rSncb. Furthermore, we observed a decrease in Snca immunostaining and messenger RNA (mRNA) levels following the exposure to higher rScnb concentrations. Akt was shown to be downregulated and pAkt upregulated by this treatment, which was accompanied by a dose-independent increase in p19(Arf) levels and enhanced intracellular Mdm2 translocation in contrast to a dose-dependent p53 activation. Moreover, Pld2 activity was shown to be induced in rSncb-treated BMECs. The expression of Hmox and Nox4 after Sncb treatment was altered on BEMCs. The obtained results demonstrate dose-dependent effects of Sncb on BMECs in vitro. For example, the p53-mediated and Akt-independent apoptosis together with the stress-mediated response of BMECs related to exposure of higher SNCB concentrations may reflect the increase in Sncb with duration of culture as well as its impact on cell decay. Further studies, expanding on the role of Sncb, may help understand its role in the neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document