scholarly journals A Heterodimer of Thioredoxin and IB2 Cooperates with Sec18p (NSF) to Promote Yeast Vacuole Inheritance

1997 ◽  
Vol 136 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Zuoyu Xu ◽  
Andreas Mayer ◽  
Eric Muller ◽  
William Wickner

Early in S phase, the vacuole (lysosome) of Saccharomyces cerevisiae projects a stream of vesicles and membranous tubules into the bud where they fuse and establish the daughter vacuole. This inheritance reaction can be studied in vitro with isolated vacuoles. Rapid and efficient homotypic fusion between saltwashed vacuoles requires the addition of only two purified soluble proteins, Sec18p (NSF) and LMA1, a novel heterodimer with a thioredoxin subunit. We now report the identity of the second subunit of LMA1 as IB2, a previously identified cytosolic inhibitor of vacuolar proteinase B. Both subunits are needed for efficient vacuole inheritance in vivo and for the LMA1 activity in cell extracts. Each subunit acts via a novel mechanism, as the thioredoxin subunit is not acting through redox chemistry and LMA1 is still needed for the fusion of vacuoles which do not contain proteinase B. Both Sec18p and LMA1 act at an early stage of the in vitro reaction. Though LMA1 does not stimulate Sec18p-mediated Sec17p release, LMA1 cannot fulfill its function before Sec18p. Upon Sec17p/Sec18p action, vacuoles become labile but are rapidly stabilized by LMA1. The action of LMA1 and Sec18p is thus coupled and ordered. These data establish LMA1 as a novel factor in trafficking of yeast vacuoles.

1996 ◽  
Vol 132 (5) ◽  
pp. 787-794 ◽  
Author(s):  
Z Xu ◽  
W Wickner

The vacuole of Saccharomyces cerevisiae projects a stream of tubules a and vesicles (a "segregation structure") into the bud in early S phase. We have described an in vitro reaction, requiring physiological temperature, ATP, and cytosol, in which isolated vacuoles form segregation structures and fuse. This in vitro reaction is defective when reaction components are prepared from vac mutants that are defective in this process in vivo, Fractionation of the cytosol reveals at least three components, each of which can support the vacuole fusion reaction, and two stimulatory fractions. Purification of one "low molecular weight activity" (LMA1) yields a heterodimeric protein with a thioredoxin subunit. Most of the thioredoxin of yeast is in this complex rather than the well-studied monomer. A deletion of both S. cerevisiae thioredoxin genes causes a striking vacuole inheritance defect in vivo, establishing a role for thioredoxin as a novel factor in this trafficking reaction.


1988 ◽  
Vol 8 (1) ◽  
pp. 361-370
Author(s):  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary

We describe the results of our studies of expression of a Saccharomyces cerevisiae amber suppressor tRNA(Leu) gene (SUP53) in mammalian cells in vivo and in cell extracts in vitro. Parallel studies were carried out with the wild-type (Su-) tRNA(Leu) gene. Extracts from HeLa or CV1 cells transcribed both tRNA(Leu) genes. The transcripts were processed correctly at the 5' and 3' ends and accurately spliced to produce mature tRNA(Leu). Surprisingly, when the same tRNA(Leu) genes were introduced into CV1 cells, only pre-tRNAs(Leu) were produced. The pre-tRNAs(Leu) made in vivo were of the same size and contained the 5'-leader and 3'-trailer sequences as did pre-tRNAs(Leu) made in vitro. Furthermore, the pre-tRNAs(Leu) made in vivo were processed to mature tRNA(Leu) when incubated with HeLa cell extracts. A tRNA(Leu) gene from which the intervening sequence had been removed yielded RNAs that also were not processed at either their 5' or 3' termini. Thus, processing of pre-tRNA(Leu) in CV1 cells is blocked at the level of 5'- and 3'-end maturation. One possible explanation of the discrepancy in the results obtained in vivo and in vitro is that tRNA biosynthesis in mammalian cells involves transport of pre-tRNA from the site of its synthesis to a site or sites where processing takes place, and perhaps the yeast pre-tRNAs(Leu) synthesized in CV1 cells are not transported to the appropriate site.


1990 ◽  
Vol 10 (5) ◽  
pp. 1915-1920 ◽  
Author(s):  
P A Kolodziej ◽  
N Woychik ◽  
S M Liao ◽  
R A Young

RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.


1991 ◽  
Vol 11 (6) ◽  
pp. 3027-3036 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
A G Hinnebusch

The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.


1990 ◽  
Vol 10 (5) ◽  
pp. 1915-1920 ◽  
Author(s):  
P A Kolodziej ◽  
N Woychik ◽  
S M Liao ◽  
R A Young

RNA polymerase II subunit composition, stoichiometry, and phosphorylation were investigated in Saccharomyces cerevisiae by attaching an epitope coding sequence to a well-characterized RNA polymerase II subunit gene (RPB3) and by immunoprecipitating the product of this gene with its associated polypeptides. The immunopurified enzyme catalyzed alpha-amanitin-sensitive RNA synthesis in vitro. The 10 polypeptides that immunoprecipitated were identical in size and number to those previously described for RNA polymerase II purified by conventional column chromatography. The relative stoichiometry of the subunits was deduced from knowledge of the sequence of the subunits and from the extent of labeling with [35S]methionine. Immunoprecipitation from 32P-labeled cell extracts revealed that three of the subunits, RPB1, RPB2, and RPB6, are phosphorylated in vivo. Phosphorylated and unphosphorylated forms of RPB1 could be distinguished; approximately half of the RNA polymerase II molecules contained a phosphorylated RPB1 subunit. These results more precisely define the subunit composition and phosphorylation of a eucaryotic RNA polymerase II enzyme.


2006 ◽  
Vol 399 (1) ◽  
pp. 151-160 ◽  
Author(s):  
Chantelle Sedgwick ◽  
Matthew Rawluk ◽  
James Decesare ◽  
Sheetal Raithatha ◽  
James Wohlschlegel ◽  
...  

The initiation of DNA replication in Saccharomyces cerevisiae depends upon the destruction of the Clb–Cdc28 inhibitor Sic1. In proliferating cells Cln–Cdc28 complexes phosphorylate Sic1, which stimulates binding of Sic1 to SCFCdc4 and triggers its proteosome mediated destruction. During sporulation cyclins are not expressed, yet Sic1 is still destroyed at the G1-/S-phase boundary. The Cdk (cyclin dependent kinase) sites are also required for Sic1 destruction during sporulation. Sic1 that is devoid of Cdk phosphorylation sites displays increased stability and decreased phosphorylation in vivo. In addition, we found that Sic1 was modified by ubiquitin in sporulating cells and that SCFCdc4 was required for this modification. The meiosis-specific kinase Ime2 has been proposed to promote Sic1 destruction by phosphorylating Sic1 in sporulating cells. We found that Ime2 phosphorylates Sic1 at multiple sites in vitro. However, only a subset of these sites corresponds to Cdk sites. The identification of multiple sites phosphorylated by Ime2 has allowed us to propose a motif for phosphorylation by Ime2 (PXS/T) where serine or threonine acts as a phospho-acceptor. Although Ime2 phosphorylates Sic1 at multiple sites in vitro, the modified Sic1 fails to bind to SCFCdc4. In addition, the expression of Ime2 in G1 arrested haploid cells does not promote the destruction of Sic1. These data support a model where Ime2 is necessary but not sufficient to promote Sic1 destruction during sporulation.


1991 ◽  
Vol 11 (6) ◽  
pp. 3027-3036 ◽  
Author(s):  
M Ramirez ◽  
R C Wek ◽  
A G Hinnebusch

The GCN4 gene of the yeast Saccharomyces cerevisiae encodes a transcriptional activator of amino acid biosynthetic genes that is regulated at the translational level according to the availability of amino acids. GCN2 is a protein kinase required for increased translation of GCN4 mRNA in amino acid-starved cells. Centrifugation of cell extracts in sucrose gradients indicated that GCN2 comigrates with ribosomal subunits and polysomes. The fraction of GCN2 cosedimenting with polysomes was reduced under conditions in which polysomes were dissociated, suggesting that GCN2 is physically bound to these structures. When the association of 40S and 60S subunits was prevented by omitting Mg2+ from the gradient, almost all of the GCN2 comigrated with 60S ribosomal subunits, and it remained bound to these particles during gel electrophoresis under nondenaturing conditions. GCN2 could be dissociated from 60S subunits by 0.5 M KCl, suggesting that it is loosely associated with ribosomes rather than being an integral ribosomal protein. Accumulation of GCN2 on free 43S-48S particles and 60S subunits occurred during polysome runoff in vitro and under conditions of reduced growth rate in vivo. These observations, plus the fact that GCN2 shows preferential association with free ribosomal subunits during exponential growth, suggest that GCN2 interacts with ribosomes during the translation initiation cycle. The extreme carboxyl-terminal segment of GCN2 is essential for its interaction with ribosomes. These sequences are also required for the ability of GCN2 to stimulate GCN4 translation in vivo, leading us to propose that ribosome association by GCN2 is important for its access to substrates in the translational machinery or for detecting uncharged tRNA in amino acid-starved cells.


1988 ◽  
Vol 8 (1) ◽  
pp. 361-370 ◽  
Author(s):  
S Ganguly ◽  
P A Sharp ◽  
U L RajBhandary

We describe the results of our studies of expression of a Saccharomyces cerevisiae amber suppressor tRNA(Leu) gene (SUP53) in mammalian cells in vivo and in cell extracts in vitro. Parallel studies were carried out with the wild-type (Su-) tRNA(Leu) gene. Extracts from HeLa or CV1 cells transcribed both tRNA(Leu) genes. The transcripts were processed correctly at the 5' and 3' ends and accurately spliced to produce mature tRNA(Leu). Surprisingly, when the same tRNA(Leu) genes were introduced into CV1 cells, only pre-tRNAs(Leu) were produced. The pre-tRNAs(Leu) made in vivo were of the same size and contained the 5'-leader and 3'-trailer sequences as did pre-tRNAs(Leu) made in vitro. Furthermore, the pre-tRNAs(Leu) made in vivo were processed to mature tRNA(Leu) when incubated with HeLa cell extracts. A tRNA(Leu) gene from which the intervening sequence had been removed yielded RNAs that also were not processed at either their 5' or 3' termini. Thus, processing of pre-tRNA(Leu) in CV1 cells is blocked at the level of 5'- and 3'-end maturation. One possible explanation of the discrepancy in the results obtained in vivo and in vitro is that tRNA biosynthesis in mammalian cells involves transport of pre-tRNA from the site of its synthesis to a site or sites where processing takes place, and perhaps the yeast pre-tRNAs(Leu) synthesized in CV1 cells are not transported to the appropriate site.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Blake J. Rasor ◽  
Xiunan Yi ◽  
Hunter Brown ◽  
Hal S. Alper ◽  
Michael C. Jewett

AbstractCell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.


1992 ◽  
Vol 119 (6) ◽  
pp. 1469-1479 ◽  
Author(s):  
B Conradt ◽  
J Shaw ◽  
T Vida ◽  
S Emr ◽  
W Wickner

Vacuole inheritance is temporally coordinated with the cell cycle and is restricted spatially to an axis between the maternal vacuole and the bud. The new bud vacuole is founded by a stream of vacuole-derived membranous vesicles and tubules which are transported from the mother cell into the bud to form the daughter organelle. We now report in vitro formation of vacuole-derived tubules and vesicles. In semi-intact cells, formation of tubulovesicular structures requires ATP and the proteins encoded by VAC1 and VAC2, two genes which are required for vacuole inheritance in vivo. Isolation of vacuoles from cell lysates before in vitro incubation reveals that formation of tubulovesicular structures requires cytosol as well as ATP. After forming tubulovesicular structures, isolated vacuoles subsequently increase in size. Biochemical assays reveal that this increase results from vacuole to vacuole fusion, leading to mixing of organellar contents. Intervacuolar fusion is sensitive to the phosphatase inhibitors microcystin-LR and okadaic acid, suggesting that protein phosphorylation/dephosphorylation reactions play a role in this event.


Sign in / Sign up

Export Citation Format

Share Document