scholarly journals Intrinsic Neuronal Determinants Locally Regulate Extrasynaptic and Synaptic Growth at the Adult Neuromuscular Junction

1997 ◽  
Vol 136 (3) ◽  
pp. 679-692 ◽  
Author(s):  
Pico Caroni ◽  
Ludwig Aigner ◽  
Corinna Schneider

Long-term functional plasticity in the nervous system can involve structural changes in terminal arborization and synaptic connections. To determine whether the differential expression of intrinsic neuronal determinants affects structural plasticity, we produced and analyzed transgenic mice overexpressing the cytosolic proteins cortical cytoskeleton–associated protein 23 (CAP-23) and growth-associated protein 43 (GAP-43) in adult neurons. Like GAP-43, CAP-23 was downregulated in mouse motor nerves and neuromuscular junctions during the second postnatal week and reexpressed during regeneration. In transgenic mice, the expression of either protein in adult motoneurons induced spontaneous and greatly potentiated stimulus-induced nerve sprouting at the neuromuscular junction. This sprouting had transgene-specific features, with CAP-23 inducing longer, but less numerous sprouts than GAP-43. Crossing of the transgenic mice led to dramatic potentiation of the sprout-inducing activities of GAP-43 and CAP-23, indicating that these related proteins have complementary and synergistic activities. In addition to ultraterminal sprouting, substantial growth of synaptic structures was induced. Experiments with pre- and postsynaptic toxins revealed that in the presence of GAP-43 or CAP-23, sprouting was stimulated by a mechanism that responds to reduced transmitter release and may be independent of postsynaptic activation. These results demonstrate the importance of intrinsic determinants in structural plasticity and provide an experimental approach to study its role in nervous system function.

2019 ◽  
Vol 28 (14) ◽  
pp. 2339-2351 ◽  
Author(s):  
Grace M McMacken ◽  
Sally Spendiff ◽  
Roger G Whittaker ◽  
Emily O’Connor ◽  
Rachel M Howarth ◽  
...  

Abstract The β-adrenergic agonists salbutamol and ephedrine have proven to be effective as therapies for human disorders of the neuromuscular junction, in particular many subsets of congenital myasthenic syndromes. However, the mechanisms underlying this clinical benefit are unknown and improved understanding of the effect of adrenergic signalling on the neuromuscular junction is essential to facilitate the development of more targeted therapies. Here, we investigated the effect of salbutamol treatment on the neuromuscular junction in the ColQ deficient mouse, a model of end-plate acetylcholinesterase deficiency. ColQ−/− mice received 7 weeks of daily salbutamol injection, and the effect on muscle strength and neuromuscular junction morphology was analysed. We show that salbutamol leads to a gradual improvement in muscle strength in ColQ−/− mice. In addition, the neuromuscular junctions of salbutamol treated mice showed significant improvements in several postsynaptic morphological defects, including increased synaptic area, acetylcholine receptor area and density, and extent of postjunctional folds. These changes occurred without alterations in skeletal muscle fibre size or type. These findings suggest that β-adrenergic agonists lead to functional benefit in the ColQ−/− mouse and to long-term structural changes at the neuromuscular junction. These effects are primarily at the postsynaptic membrane and may lead to enhanced neuromuscular transmission.


2021 ◽  
Author(s):  
Mathieu Bartoletti ◽  
Tracy Knight ◽  
Aaron Held ◽  
Laura M. Rand ◽  
Kristi A. Wharton

ABSTRACTThe nervous system is a complex network of cells whose interactions provide circuitry necessary for an organism to perceive and move through its environment. Revealing the molecular basis of how neurons and non-neuronal glia communicate is essential for understanding neural development, behavior, and abnormalities of the nervous system. BMP signaling in motor neurons, activated in part by retrograde signals from muscle expressed Gbb (BMP5/6/7) has been implicated in synaptic growth, function and plasticity inDrosophila melanogaster. Through loss-of-function studies, we establish Gbb as a critical mediator of glia to neuron signaling important for proper synaptic growth. Furthermore, the BMP2/4 ortholog, Dpp, expressed in a subset of motor neurons, acts by autocrine signaling to also facilitate neuromuscular junction (NMJ) growth at specific muscle innervation sites. In addition to signaling from glia to motor neurons, autocrine Gbb induces signaling in larval VNC glia which strongly express the BMP type II receptor, Wit. In addition to Dpp’s autocrine motor neuron signaling, Dpp also engages in paracrine signaling to adjacent glia but not to neighboring motor neurons. In one type of dorsal midline motor neuron, RP2,dpptranscription is under tight regulation, as its expression is under autoregulatory control in RP2 but not aCC neurons. Taken together our findings indicate that bi-directional BMP signaling, mediated by two different ligands, facilitates communication between glia and neurons. Gbb, prominently expressed in glia, and Dpp acting from a discrete set of neurons induce active Smad-dependent BMP signaling to influence bouton number during neuromuscular junction growth.


2018 ◽  
Author(s):  
Pragya Goel ◽  
Mehak Khan ◽  
Samantha Howard ◽  
Beril Kiragasi ◽  
Koto Kikuma ◽  
...  

ABSTRACTSynapses grow, prune, and remodel throughout development, experience, and disease. This structural plasticity can destabilize information transfer in the nervous system. However, neural activity remains remarkably stable throughout life, implying that adaptive countermeasures exist to stabilize neurotransmission. Aberrant synaptic structure and function has been associated with a variety of neural diseases including Fragile X syndrome, autism, and intellectual disability. We have screened disruptions in over 300 genes in Drosophila for defects in synaptic growth at the neuromuscular junction. This effort identified 12 mutants with severe reductions or enhancements in synaptic growth. Remarkably, electrophysiological recordings revealed synaptic strength in all but one of these mutants was unchanged compared to wild type. We utilized a combination of genetic, anatomical, and electrophysiological analyses to illuminate three mechanisms that stabilize synaptic strength in the face of alterations in synaptic growth. These include compensatory changes in 1) postsynaptic receptor abundance; 2) presynaptic morphology; and 3) active zone structure. Together, this analysis identifies new genes that regulate synaptic growth and the adaptive strategies that synapses employ to homeostatically stabilize synaptic strength in response.AUTHOR SUMMARYThroughout development, maturation, experience, and disease, synapses undergo dramatic changes in growth and remodeling. Although these processes are necessary for learning and memory, they pose major challenges to stable function in the nervous system. However, neurotransmission is typically constrained within narrow physiological ranges, implying the existence of homeostatic mechanisms that maintain stable functionality despite drastic alterations in synapse number. In this study we investigate the relationship between synaptic growth and function across a variety of mutations in neural and synaptic genes in the fruitfly Drosophila melanogaster. Using the neuromuscular junction as a model system, we reveal three adaptive mechanisms that stabilize synaptic strength when synapses are dramatically under- or over-grown. Together, these findings provide insights into the strategies employed at both pre- and post-synaptic compartments to ensure stable functionality while allowing considerable flexibility in overall synapse number.


2019 ◽  
Author(s):  
Sarah Perry ◽  
Pragya Goel ◽  
Daniel Miller ◽  
Barry Ganetzky ◽  
Dion Dickman

ABSTRACTPositive and negative modes of regulation typically constrain synaptic growth and function within narrow physiological ranges. However, it is unclear how synaptic strength is maintained when both pre- and post-synaptic compartments continue to grow beyond stages imposed by typical developmental programs. To address whether and how synapses can adjust to a novel life stage for which they were never molded by evolution, we have characterized synaptic growth, structure and function at the Drosophila neuromuscular junction (NMJ) under conditions where larvae are terminally arrested at the third instar stage. While wild type larvae transition to pupae after 5 days, arrested third instar (ATI) larvae persist for up to 35 days, during which NMJs exhibit extensive overgrowth in muscle size, presynaptic release sites, and postsynaptic glutamate receptors. Remarkably, despite this exuberant growth of both pre- and post-synaptic structures, stable neurotransmission is maintained throughout the ATI lifespan through a potent homeostatic reduction in presynaptic neurotransmitter release. Arrest of the larval stage in stathmin mutants reveals a degree of progressive instability and neurodegeneration that was not apparent during the typical larval period. Hence, during a period of unconstrained synaptic growth through an extended developmental period, a robust and adaptive form of presynaptic homeostatic depression can stabilize neurotransmission. More generally, the ATI manipulation provides an attractive system for studying neurodegeneration and plasticity across longer time scales.SIGNIFICANCE STATEMENTIt is unclear whether and how synapses adjust to a novel life stage for which they were never molded by evolution. We have characterized synaptic plasticity at the Drosophila neuromuscular junction in third instar larvae arrested in development for over 35 days. This approach has revealed that homeostatic depression stabilizes synaptic strength throughout the life of arrested third instars to compensate for excessive pre- and post-synaptic growth. This system also now opens the way for the study of synapses and degeneration over long time scales in this powerful model synapse.


In every day usage to say that something shows plasticity implies that it can be moulded or readily made to assume a new shape. In relation to the nervous system, we commonly imply a further restriction of meaning when using this term ; plasticity in the nervous system means an ordered or patterned alteration of organization - one which makes some sort of sense biologically. We do not mean just any alteration; for instance, a massive and disorganized malfunction associated with extensive injury would not be called plasticity. To qualify for this term an alteration has to show pattern or order, and we would normally imply that the structures or functions under discussion alter in some way to compensate for the deficit. When the plasticity takes the form of learning or memory, the functional alteration resulting from the input experience must also be organized, this time in a functional sense; functional or structural changes that were chaotic would qualify neither for the term plasticity nor the term learning. Plasticity of neural structure is discussed in several papers at this meeting. Horder, Keating, and Mark consider some of the very dramatic alterations that may be induced in the nervous systems of lower vertebrates, while Rakic, Raisman, and Wall describe structural changes in mammals. Some of the work discussed, notably that on amphibians and fishes, as well as the comparable mammalian work of Lund and Schneider which was unfortunately not represented at the meeting, merges at the edges into the sort of changes normally considered embryological. The question how closely mechanisms underlying structural plasticity are related to those underlying, for instance, embryological regulation, remains unanswered. The nature of neither phenomenon is yet understood.


2000 ◽  
Vol 151 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Robert W. Burgess ◽  
William C. Skarnes ◽  
Joshua R. Sanes

The proteoglycan agrin is required for postsynaptic differentiation at the skeletal neuromuscular junction, but is also associated with basal laminae in numerous other tissues, and with the surfaces of some neurons. Little is known about its roles at sites other than the neuromuscular junction, or about how its expression and subcellular localization are regulated in any tissue. Here we demonstrate that the murine agrin gene generates two proteins with different NH2 termini, and present evidence that these isoforms differ in subcellular localization, tissue distribution, and function. The two isoforms share ∼1,900 amino acids (aa) of common sequence following unique NH2 termini of 49 or 150 aa; we therefore call them short NH2-terminal (SN) and long NH2-terminal (LN) isoforms. In the mouse genome, LN-specific exons are upstream of an SN-specific exon, which is in turn upstream of common exons. LN-agrin is expressed in both neural and nonneural tissues. In spinal cord it is expressed in discrete subsets of cells, including motoneurons. In contrast, SN-agrin is selectively expressed in the nervous system but is widely distributed in many neuronal cell types. Both isoforms are externalized from cells but LN-agrin assembles into basal laminae whereas SN-agrin remains cell associated. Differential expression of the two isoforms appears to be transcriptionally regulated, whereas the unique SN and LN sequences direct their distinct subcellular localizations. Insertion of a “gene trap” construct into the mouse genome between the LN and SN exons abolished expression of LN-agrin with no detectable effect on expression levels of SN-agrin or on SN-agrin bioactivity in vitro. Agrin protein was absent from all basal laminae in mice lacking LN-agrin transcripts. The formation of the neuromuscular junctions was as drastically impaired in these mutants as in mice lacking all forms of agrin. Thus, basal lamina–associated LN-agrin is required for neuromuscular synaptogenesis, whereas cell-associated SN-agrin may play distinct roles in the central nervous system.


Cell ◽  
1995 ◽  
Vol 83 (2) ◽  
pp. 269-278 ◽  
Author(s):  
Ludwig Aigner ◽  
Silvia Arber ◽  
Josef P. Kapfhammer ◽  
Thorsten Laux ◽  
Corinna Schneider ◽  
...  

Author(s):  
Francesco Clementi

After some words on the scientific role of Professor Paolo Mantegazza atthe University of Milan (4, 5, 6), I briefly illustrate some studies related to the occurrence of neurotransmitter and receptor re-specification in the adult animals. The greatdiscoveries of the early twentieth century on neuronal communication have established that the majority of communication between nerve cells occurs through a special structure, the synapse, allowing the one-way transfer of information between twocells through the release of a neurotransmitter from the presynaptic cell and its recognition by receptors localized in the postsynaptic cell. According to H. Dale axiom (9) each neuron could be identified on the basis of the neurotransmitter released and theinnervated cell by the type of receptors expressed; then neurons could be classified asexcitatory if they release acetylcholine, glutamate or other transmitters, or inhibitory ifthey release GABA or glycine. However, in recent years many studies have shown that, especially during development, a neuron could release and co-release several neuro-transmitters, sometimes even simultaneously, changing its classification from excitatory to inhibitory and vice versa(7). This researches opened a new field of study onsynaptic plasticity: the neurotransmitter and receptor re-specification. Our group, together with Prof. Mantegazza, tried to “force” it through experiments of denervation and heterologous re-innervation in the autonomic nervous system and at the neuromuscular junction. In a first series of experiments we studied the regenerative capabilities of the peripheral nervous system in three experimental models: a) re-innervation of the denervated superior cervical ganglion (SCG) (14, 15, 22) by cholinergicefferent vagal fibers, b) re-innervation of peripheral effectors smooth muscles (nicti-tating membrane) by the cholinergic preganglionic fibers; c) re-innervation in an in vivo transplant model of peripheral organs by the SCG. In these researches we haveestablished: 1) that a sympathetic ganglion could be re-innervated by vagal fibersforming normal ganglionic synapses, but with a strong reshaping, in vivo, of the cen-tral neural circuits so that sympathetic stimuli occurred through a vagal excitation; 2) preganglionic cholinergic fibers innervate the smooth muscle of the nictitating mem-brane releasing catecholamines instead of acetylcholine; 3) that in an in vivo model ofSCG transplant together with iris or adrenal medulla fragments, the SCG was able todistinguish between organs that required a postsynaptic innervation, iris, which wasinnervated, and organs that require a presynaptic innervation, the adrenal medulla,that was not innervated. We were then in the presence, even in the adult animal, of anew nervous plasticity with re-specification the neurotransmitter. These resultsdemonstrate that heterologous innervation could “force” plasticity in adult peripheralnervous system, alters the biological properties of neurons, upsets central neuronal circuits, but continues to maintain in experimental transplants basic rules of innervation between neurons and peripheral organs. Thirty years later, the group of prof. Brunelliin Brescia (23), along with pharmacologists and physiologists, had highlighted the pos-sibility of re-innervate striated muscles in a functional way with nerve fibers derivedfrom the red nucleus of the vestibular complex. The interest was, once again, in thefact that the re-innervating fibers were of glutamatergic type, and not cholinergic likethose of normal motor neurons, and that neuromuscular transmission was transformedfrom nicotinic cholinergic in glutamatergic. A new type of plasticity: the receptor re-specification had occurred also in this experimenal model. In close cooperationbetween our Milan and the Brescia group we could reconfirm with more appropriateexperiments that the re-innervation occurred; that neuromuscular junction had a glutamatergic transmission; that new re-innervating fibers made synapses at the same sitesof the previous neuromuscular junctions; that the new fibers release glutamate; andthat muscle cells expressed new glutamate receptors (24). Once again we were in thepresence of an extraordinary phenomenon of synaptic plasticity, in this case a receptorre-specification, and again with a strong impact on the central nervous system circuits.These experiences, along with many others now available in the literature, show thatthe adult peripheral nervous system, both autonomous and musculoskeletal, has aplasticity unthinkable before and open a field of great interest aiming at the understanding how neuronal specificity is regulated and at the investigation of non-canonical, but perhaps functional, re-innervation experiments in transplants and in post-traumatic surgery.


Sign in / Sign up

Export Citation Format

Share Document