neural growth
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 20)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 22 (23) ◽  
pp. 13047
Author(s):  
Maria Grazia Tupone ◽  
Gloria Panella ◽  
Michele d’Angelo ◽  
Vanessa Castelli ◽  
Giulia Caioni ◽  
...  

Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.


2021 ◽  
Author(s):  
Manjunath Machnoor ◽  
Ege Iseri ◽  
Arthur Shao ◽  
Javad Paknahad ◽  
Kimberly K. Gokoffski ◽  
...  

2021 ◽  
Vol 31 (Supplement_2) ◽  
Author(s):  
N B Oliveira ◽  
A C Irioda ◽  
P E F Stricker ◽  
B F Mogharbel ◽  
N N Rosa ◽  
...  

Abstract Background Mesenchymal stem cells (MSCs) can be isolated from any tissue derived from the mesoderm and have as main characteristics: high plasticity, the ability to originate mesodermal and non-mesodermal tissues, acting in the modulation of the inflammatory response, and the tissue repair. When grown in microenvironments with elasticity comparable to the human brain, these cells can differentiate efficiently in neural cells due to the mechanism related to the YAP protein, which can mediate responses to substrate stiffness in mesenchymal stem cells. Methods Human adipose-derived MSCs were isolated*, then it was done the trilineage test into adipocytes, osteocytes and, chondrocytes. Besides that, differentiation to neural precursor cells was through neurospheres after seeding the cells over a natural biopolymer matrix as NFBX. Those cells were analyzed using flow cytometry for the surface markers CD13, CD34, CD45, CD73, CD90, CD105, HLA-DR, HLA-ABC, immunocytochemistry for the proteins Nestina, ß-tubulin III, YAP and AMOT and RT-PCR for the NEFM and TUBB3 genes. Results Isolated cells demonstrated characteristics of MSCs. Those cells were differentiated in neural precursors, expressing the proteins Nestina and ß-tubulin III on immunocytochemistry and, the NEFM and TUBB3 genes in RT-PCR. Regarding the YAP and AMOT proteins, it was possible to observe the translocation of the YAP protein in response to the regulation of AMOT out of the cell nucleus, proving neurodifferentiation. Conclusions Human adipose-derived MSCs seeded in a natural biopolymer matrix were able to differentiate into neural precursors expressing characteristic neural markers without adding any neural growth factors or genetic induction.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4236
Author(s):  
Nieves Casañ-Pastor

Nanostructuring nanocarbons with IrOx yields to material coatings with large charge capacities for neural electrostimulation, and large reproducibility in time, that carbons do not exhibit. This work shows the contributions of carbon and the different nanostructures present, as well as the impact of functionalizing graphene with oxygen and nitrogen, and the effects of including conducting polymers within the hybrid materials. Different mammalian neural growth models differentiate the roles of the substrate material in absence and in presence of applied electric fields and address optimal electrodes for the future clinical applications.


Author(s):  
Nicolas R. Chevalier ◽  
Richard J. Amedzrovi Agbesi ◽  
Yanis Ammouche ◽  
Sylvie Dufour

Neurons and glia of the enteric nervous system (ENS) are constantly subject to mechanical stress stemming from contractions of the gut wall or pressure of the bolus, both in adulthood and during embryonic development. Because it is known that mechanical forces can have long reaching effects on neural growth, we investigate here how contractions of the circular smooth muscle of the gut impact morphogenesis of the developing fetal ENS, in chicken and mouse embryos. We find that the number of enteric ganglia is fixed early in development and that subsequent ENS morphogenesis consists in the anisotropic expansion of a hexagonal honeycomb (chicken) or a square (mouse) lattice, without de-novo ganglion formation. We image the deformations of the ENS during spontaneous myogenic motility and show that circular smooth muscle contractile waves induce longitudinal strain on the ENS network; we rationalize this behavior by mechanical finite element modeling of the incompressible gut wall. We find that the longitudinal anisotropy of the ENS vanishes when contractile waves are suppressed in organ culture, showing that these contractile forces play a key role in sculpting the developing ENS. We conclude by summarizing different key events in the fetal development of the ENS and the role played by mechanics in the morphogenesis of this unique nerve network.


2021 ◽  
Vol 31 (21) ◽  
pp. 2170150
Author(s):  
Oana Dobre ◽  
Mariana A. G. Oliva ◽  
Giuseppe Ciccone ◽  
Sara Trujillo ◽  
Aleixandre Rodrigo‐Navarro ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2010225
Author(s):  
Oana Dobre ◽  
Mariana A. G. Oliva ◽  
Giuseppe Ciccone ◽  
Sara Trujillo ◽  
Aleixandre Rodrigo‐Navarro ◽  
...  
Keyword(s):  

2021 ◽  
Vol 22 (3) ◽  
pp. 1433
Author(s):  
Carl Randall Harrell ◽  
Ana Volarevic ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cell (MSC)-derived exosomes (MSC-Exo) are nano-sized extracellular vesicles enriched with MSC-sourced neuroprotective and immunomodulatory microRNAs, neural growth factors, and anti-inflammatory cytokines, which attenuate neuro-inflammation, promote neo-vascularization, induce neurogenesis, and reduce apoptotic loss of neural cells. Accordingly, a large number of experimental studies demonstrated MSC-Exo-dependent improvement of cognitive impairment in experimental animals. In this review article, we summarized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exo-based restoration of cognitive function, emphasizing therapeutic potential of MSC-Exos in the treatment of neurocognitive disorders.


2020 ◽  
Vol 14 ◽  
Author(s):  
Nicole Kaminski ◽  
Christian Köster ◽  
Yanis Mouloud ◽  
Verena Börger ◽  
Ursula Felderhoff-Müser ◽  
...  

Background: Neonatal encephalopathy caused by hypoxia-ischemia (HI) is a major cause of childhood mortality and disability. Stem cell-based regenerative therapies seem promising to prevent long-term neurological deficits. Our previous work in neonatal HI revealed an unexpected interaction between mesenchymal stem/stromal cells (MSCs) and the brains' microenvironment leading to an altered therapeutic efficiency. MSCs are supposed to mediate most of their therapeutic effects in a paracrine mode via extracellular vesicles (EVs), which might be an alternative to cell therapy. In the present study, we investigated the impact of MSC-EVs on neonatal HI-induced brain injury.Methods: Nine-day-old C57BL/6 mice were exposed to HI through ligation of the right common carotid artery followed by 1 h hypoxia (10% oxygen). MSC-EVs were injected intraperitoneally 1, 3, and 5 days after HI. One week after HI, brain injury was evaluated by regional neuropathological scoring, atrophy measurements and immunohistochemistry to assess effects on neuronal, oligodendrocyte and vessel densities, proliferation, oligodendrocyte maturation, myelination, astro-, and microglia activation. Immunohistochemistry analyses were complemented by mRNA expression analyses for a broad set of M1/M2- and A1/A2-associated molecules and neural growth factors.Results: While total neuropathological scores and tissue atrophy were not changed, MSC-EVs significantly protected from HI-induced striatal tissue loss and decreased micro- and astroglia activation. MSC-EVs lead to a significant downregulation of the pro-inflammatory cytokine TNFa, accompanied by a significant upregulation of the M2 marker YM-1 and the anti-inflammatory cytokine TGFb. MSC-EVs significantly decreased astrocytic expression of the A1 marker C3, concomitant with an increased expression of neural growth factors (i.e., BDNF, VEGF, and EGF). These alterations were associated with an increased neuronal and vessel density, coinciding with a significant increase of proliferating cells in the neurogenic sub-ventricular zone juxtaposed to the striatum. MSC-EV-mediated neuroprotection went along with a significant improvement of oligodendrocyte maturation and myelination.Conclusion: The present study demonstrates that MSC-EVs mediate anti-inflammatory effects, promote regenerative responses and improve key developmental processes in the injured neonatal brain. The present results suggest different cellular target mechanisms of MSC-EVs, preventing secondary HI-induced brain injury. MSC-EV treatment may be a promising alternative to risk-associated cell therapies in neonatal brain injury.


Sign in / Sign up

Export Citation Format

Share Document