scholarly journals Different Steady State Subcellular Distributions of the Three Splice Variants of Lysosome-associated Membrane Protein LAMP-2 Are Determined Largely by the COOH-terminal Amino Acid Residue

1997 ◽  
Vol 137 (5) ◽  
pp. 1161-1169 ◽  
Author(s):  
Nancy R. Gough ◽  
Douglas M. Fambrough

The extensively glycosylated lysosome-associated membrane proteins (LAMP)-2a, b, and c are derived from a single gene by alternative splicing that produces proteins with differences in the transmembrane and cytosolic domains. The lysosomal targeting signals reside in the cytosolic domain of these proteins. LAMPs are not restricted to lysosomes but can also be found in endosomes and at the cell surface. We investigated the subcellular distribution of chimeras comprised of the lumenal domain of avian LAMP-1 and the alternatively spliced domains of avian LAMP-2. Chimeras with the LAMP-2c cytosolic domain showed predominantly lysosomal distribution, while higher levels of chimeras with the LAMP-2a or b cytosolic domain were present at the cell surface. The increase in cell surface expression was due to differences in the recognition of the targeting signals and not saturation of intracellular trafficking machinery. Site-directed mutagenesis defined the COOH-terminal residue of the cytosolic tail as critical in governing the distributions of LAMP-2a, b, and c between intracellular compartments and the cell surface.

2006 ◽  
Vol 401 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Chiharu Sogawa ◽  
Kei Kumagai ◽  
Norio Sogawa ◽  
Katsuya Morita ◽  
Toshihiro Dohi ◽  
...  

The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl−-dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.


2021 ◽  
Vol 22 (19) ◽  
pp. 10207
Author(s):  
Julien Vitry ◽  
Guillaume Paré ◽  
Andréa Murru ◽  
Xavier Charest-Morin ◽  
Halim Maaroufi ◽  
...  

CLEC12A is a myeloid inhibitory receptor that negatively regulates inflammation in mouse models of autoimmune and autoinflammatory arthritis. Reduced CLEC12A expression enhances myeloid cell activation and inflammation in CLEC12A knock-out mice with collagen antibody-induced or gout-like arthritis. Similarly to other C-type lectin receptors, CLEC12A harbours a stalk domain between its ligand binding and transmembrane domains. While it is presumed that the cysteines in the stalk domain have multimerisation properties, their role in CLEC12A expression and/or signaling remain unknown. We thus used site-directed mutagenesis to determine whether the stalk domain cysteines play a role in CLEC12A expression, internalisation, oligomerisation, and/or signaling. Mutation of C118 blocks CLEC12A transport through the secretory pathway diminishing its cell-surface expression. In contrast, mutating C130 does not affect CLEC12A cell-surface expression but increases its oligomerisation, inducing ligand-independent phosphorylation of the receptor. Moreover, we provide evidence that CLEC12A dimerisation is regulated in a redox-dependent manner. We also show that antibody-induced CLEC12A cross-linking induces flotillin oligomerisation in insoluble membrane domains in which CLEC12A signals. Taken together, these data indicate that the stalk cysteines in CLEC12A differentially modulate this inhibitory receptor’s expression, oligomerisation and signaling, suggestive of the regulation of CLEC12A in a redox-dependent manner during inflammation.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2873-2881 ◽  
Author(s):  
Rachel E. Dickinson ◽  
Alan J. Stewart ◽  
Michelle Myers ◽  
Robert P. Millar ◽  
W. Colin Duncan

The human LH receptor (LHR) plays a key role in luteal function and the establishment of pregnancy through its interaction with the gonadotropins LH and human chorionic gonadotropin. We previously identified four splice variants of the LHR in human luteinized granulosa cells (LGCs) and corpora lutea (CL). Real-time quantitative PCR revealed that expression of the full-length LHR (LHRa) and the most truncated form (LHRd) changed significantly in CL harvested at different stages of the ovarian cycle (P < 0.01, ANOVA). LHRa expression was reduced in the late luteal CL (P < 0.05). Conversely, an increase in LHRd expression was observed in the late luteal CL (P < 0.01). Chronic manipulation of human chorionic gonadotropin in LGC primary cultures supported the in vivo findings. LHRd encodes a protein lacking the transmembrane and carboxyl terminal domains. COS-7 cells expressing LHRd were unable to produce cAMP in response to LH stimulation. COS-7 cells coexpressing LHRd and LHRa also failed to generate cAMP in response to LH, suggesting that this truncated form has a negative effect on the signaling of LHRa. Immunofluorescence staining of LGC and COS-7 cells implied that there is a reduction in cell surface expression of LHRa when LHRd is present. Overall, these results imply expression of LHR splice variants is regulated in the human CL. Furthermore, during functional luteolysis a truncated variant could modulate the cell surface expression and activity of full-length LHR.


2018 ◽  
Vol 45 (5) ◽  
pp. 2071-2085 ◽  
Author(s):  
Maria Agthe ◽  
Yvonne Garbers ◽  
Joachim Grötzinger ◽  
Christoph Garbers

Background/Aims: The cytokine interleukin-11 (IL-11) has important pro- and anti-inflammatory functions. It activates its target cells through binding to the IL-11 receptor (IL-11R), and the IL-11/IL-11R complex recruits a homodimer of glycoprotein 130 (gp130). N-linked glycosylation, a post-translational modification where complex oligosaccharides are attached to the side chain of asparagine residues, is often important for stability, folding and biological function of cytokine receptors. Methods: We generated different IL-11R mutants via site-directed mutagenesis and analyzed them in different cell lines via Western blot, flow cytometry, confocal microscopy and proliferation assays. Results: In this study, we identified two functional N-glycosylation sites in the D2 domain of the IL-11R at N127 and N194. While mutation of N127Q only slightly affects cell surface expression of the IL-11R, mutation of N194Q broadly prevents IL-11R appearance at the plasma membrane. Accordingly, IL-11R mutants lacking N194 are retained within the ER, whereas the N127 mutant is transported through the Golgi complex to the cell surface, uncovering a differential role of the two N-glycan sequons for IL-11R maturation. Interestingly, IL-11R mutants devoid of one or both N-glycans are still biologically active. Furthermore, the IL-11RN127Q/N194Q mutant shows no inducible shedding by ADAM10, but is rather constitutively released into the supernatant. Conclusion: Our results show that the two N-glycosylation sites differentially influence stability and proteolytic processing of the IL-11R, but that N-linked glycosylation is not a prerequisite for IL-11 signaling.


1985 ◽  
Vol 5 (11) ◽  
pp. 3074-3083 ◽  
Author(s):  
C E Machamer ◽  
R Z Florkiewicz ◽  
J K Rose

We investigated the role of glycosylation in intracellular transport and cell surface expression of the vesicular stomatitis virus glycoprotein (G) in cells expressing G protein from cloned cDNA. The individual contributions of the two asparagine-linked glycans of G protein to cell surface expression were assessed by site-directed mutagenesis of the coding sequence to eliminate one or the other or both of the glycosylation sites. One oligosaccharide at either position was sufficient for cell surface expression of G protein in transfected cells, and the rates of oligosaccharide processing were similar to the rate observed for wild-type protein. However, the nonglycosylated G protein synthesized when both glycosylation sites were eliminated did not reach the cell surface. This protein did appear to reach a Golgi-like region, as determined by indirect immunofluorescence microscopy, however, and was modified with palmitic acid. It was also apparently not subject to increased proteolytic breakdown.


2002 ◽  
Vol 115 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Hadi Al-Hasani ◽  
Raghu K. Kunamneni ◽  
Kevin Dawson ◽  
Cynthia S. Hinck ◽  
Dirk Müller-Wieland ◽  
...  

In insulin target cells, the predominantly expressed glucose transporter isoform GLUT4 recycles between distinct intracellular compartments and the plasma membrane. To characterize putative targeting signals within GLUT4 in a physiologically relevant cell type, we have analyzed the trafficking of hemagglutinin (HA)-epitope-tagged GLUT4 mutants in transiently transfected primary rat adipose cells. Mutation of the C-terminal dileucine motif (LL489/90) did not affect the cell-surface expression of HA-GLUT4. However, mutation of the N-terminal phenylalanine-based targeting sequence (F5) resulted in substantial increases, whereas deletion of 37 or 28 of the 44 C-terminal residues led to substantial decreases in cell-surface HA-GLUT4 in both the basal and insulin-stimulated states. Studies with wortmannin and coexpression of a dominant-negative dynamin GTPase mutant indicate that these effects appear to be primarily due to decreases and increases, respectively, in the rate of endocytosis. Yeast two-hybrid analyses revealed that the N-terminal phenylalanine-based targeting signal in GLUT4 constitutes a binding site for medium chain adaptins μ1, μ2, and μ3A, implicating a role of this motif in the targeting of GLUT4 to clathrin-coated vesicles.


2000 ◽  
Vol 347 (3) ◽  
pp. 771-779 ◽  
Author(s):  
Thomas C. ELLEMAN ◽  
Maurice J. FRENKEL ◽  
Peter A. HOYNE ◽  
Neil M. MCKERN ◽  
Leah COSGROVE ◽  
...  

Site-directed mutagenesis has been used to remove 15 of the 18 potential N-linked glycosylation sites, in 16 combinations, from the human exon 11-minus receptor isoform. The three glycosylation sites not mutated were asparagine residues 25, 397 and 894, which are known to be important in receptor biosynthesis or function. The effects of these mutations on proreceptor processing into α and β subunits, cell-surface expression, insulin binding and receptor autophosphorylation were assessed in Chinese hamster ovary cells. The double mutants 16+78, 16+111, 16+215, 16+255, 337+418, the triple mutants 295+337+418, 295+418+514, 337+418+514 and 730+743+881 and the quadruple mutants 606+730+743+881 and 671+730+743+881 seemed normal by all criteria examined. The triple mutant 16+215+255 showed only low levels of correctly processed receptor on the cell surface, this processed receptor being autophosphorylated in response to insulin. The quadruple mutant 624+730+743+881 showed normal processing and ligand binding but exhibited a constitutively active tyrosine kinase as judged by autophosphorylation. Three higher-order mutants were constructed, two of which, 16+337+418+730+743+881 (∆6) and 16+295+337+418+730+743+881 (∆7a), seemed normal. The third construct, 16+337+418+514+730+743+881 (∆7b), was expressed at high levels on the cell surface, essentially as uncleaved proreceptor with only the small proportion of ∆7b that was correctly processed showing insulin-stimulated autophosphorylation. The mutations of ∆6 and ∆7a were incorporated into soluble ectodomains, which had affinities for insulin that were 4-fold that of wild-type ectodomain. The ∆6 ectodomain expressed in Lec8 cells was produced in quantity in a bioreactor for subsequent structural analysis.


2007 ◽  
Vol 293 (1) ◽  
pp. C152-C161 ◽  
Author(s):  
Lian Zhang ◽  
Karyn Foster ◽  
Qiuju Li ◽  
Jeffrey R. Martens

The number of ion channels expressed on the cell surface shapes the complex electrical response of excitable cells. An imbalance in the ratio of inward and outward conducting channels is unfavorable and often detrimental. For example, over- or underexpression of voltage-gated K+ (Kv) channels can be cytotoxic and in some cases lead to disease. In this study, we demonstrated a novel role for S-acylation in Kv1.5 cell surface expression. In transfected fibroblasts, biochemical evidence showed that Kv1.5 is posttranslationally modified on both the NH2 and COOH termini via hydroxylamine-sensitive thioester bonds. Pharmacological inhibition of S-acylation, but not myristoylation, significantly decreased Kv1.5 expression and resulted in accumulation of channel protein in intracellular compartments and targeting for degradation. Channel protein degradation was rescued by treatment with proteasome inhibitors. Time course experiments revealed that S-acylation occurred in the biosynthetic pathway of nascent channel protein and showed that newly synthesized Kv1.5 protein, but not protein expressed on the cell surface, is sensitive to inhibitors of thioacylation. Sensitivity to inhibitors of S-acylation was governed by COOH-terminal, but not NH2-terminal, cysteines. Surprisingly, although intracellular cysteines were required for S-acylation, mutation of these residues resulted in an increase in Kv1.5 cell surface channel expression, suggesting that screening of free cysteines by fatty acylation is an important regulatory step in the quality control pathway. Together, these results show that S-acylation can regulate steady-state expression of Kv1.5.


Blood ◽  
2007 ◽  
Vol 110 (1) ◽  
pp. 161-170 ◽  
Author(s):  
Samir K. Mandal ◽  
Usha R. Pendurthi ◽  
L. Vijaya Mohan Rao

Tissue factor (TF) is the cellular receptor for clotting factor VIIa (FVIIa), and the formation of TF-FVIIa complexes on cell surfaces triggers the activation of the coagulation cascade and the cell signaling. Our recent studies have shown that a majority of TF resides in various intracellular compartments, predominantly in the Golgi, and that FVIIa binding to cell surface TF induces TF endocytosis and mobilizes the Golgi TF pool to translocate it to the cell surface. This present study is aimed to elucidate the mechanisms involved in TF endocytosis and its mobilization from the Golgi. Activation of protease-activated receptor 1 (PAR1) and PAR2 by specific peptide agonists and proteases, independent of FVIIa, mobilized TF from the Golgi store and increased the cell surface expression of TF. Blocking PAR2 activation, but not PAR1, with neutralizing antibodies fully attenuated the FVIIa-induced TF mobilization. Consistent with these data, silencing the PAR2 receptor, and not PAR1, abrogated the FVIIa-mediated TF mobilization. In contrast to their effect on TF mobilization, PAR1 and PAR2 activation, in the absence of FVIIa, had no effect on TF endocytosis. However, PAR2 activation is found to be critical for the FVIIa-induced TF endocytosis. Overall the data herein provide novel insights into the role of PARs in regulating cell surface TF expression.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 660-670 ◽  
Author(s):  
Simon Roy ◽  
Benoît Perron ◽  
Nicole Gallo-Payet

Asparagine-linked glycosylation (N-glycosylation) of G protein-coupled receptors may be necessary for functions ranging from agonist binding, folding, maturation, stability, and internalization. Human melanocortin 2 receptor (MC2R) possesses putative N-glycosylation sites in its N-terminal extracellular domain; however, to date, the role of MC2R N-glycosylation has yet to be investigated. The objective of the present study is to examine whether N-glycosylation is essential or not for cell surface expression and cAMP production in native and MC2R accessory protein (MRAPα, -β, or -dCT)-expressing cells using 293/FRT transfected with Myc-MC2R. Western blot analyses performed with or without endoglycosidase H, peptide:N-glycosidase F or tunicamycin treatments and site-directed mutagenesis revealed that MC2R was glycosylated in the N-terminal domain at its two putative N-glycosylation sites (Asn12-Asn13-Thr14 and Asn17-Asn18-Ser19). In the absence of human MRAP coexpression, N-glycosylation of at least one of the two sites was necessary for MC2R cell surface expression. However, when MRAP was present, cell surface expression of MC2R mutants was either rescued entirely with the N17-18Q (QQNN) and N12-13Q (NNQQ) mutants or partially with the unglycosylated N12-13, 17-18Q (QQQQ) mutant. Functional and expression analyses revealed a discrepancy between wild-type (WT) and QQQQ cell surface receptor levels and maximal cAMP production with a 4-fold increase in EC50 values. Taken together, these results indicate that the absence of MC2R N-glycosylation abrogates to a large extent MC2R cell surface expression in the absence of MRAPs, whereas when MC2R is N-glycosylated, it can be expressed at the plasma membrane without MRAP assistance.


Sign in / Sign up

Export Citation Format

Share Document