scholarly journals Differential Expression and Functional Characterization of Luteinizing Hormone Receptor Splice Variants in Human Luteal Cells: Implications for Luteolysis

Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2873-2881 ◽  
Author(s):  
Rachel E. Dickinson ◽  
Alan J. Stewart ◽  
Michelle Myers ◽  
Robert P. Millar ◽  
W. Colin Duncan

The human LH receptor (LHR) plays a key role in luteal function and the establishment of pregnancy through its interaction with the gonadotropins LH and human chorionic gonadotropin. We previously identified four splice variants of the LHR in human luteinized granulosa cells (LGCs) and corpora lutea (CL). Real-time quantitative PCR revealed that expression of the full-length LHR (LHRa) and the most truncated form (LHRd) changed significantly in CL harvested at different stages of the ovarian cycle (P < 0.01, ANOVA). LHRa expression was reduced in the late luteal CL (P < 0.05). Conversely, an increase in LHRd expression was observed in the late luteal CL (P < 0.01). Chronic manipulation of human chorionic gonadotropin in LGC primary cultures supported the in vivo findings. LHRd encodes a protein lacking the transmembrane and carboxyl terminal domains. COS-7 cells expressing LHRd were unable to produce cAMP in response to LH stimulation. COS-7 cells coexpressing LHRd and LHRa also failed to generate cAMP in response to LH, suggesting that this truncated form has a negative effect on the signaling of LHRa. Immunofluorescence staining of LGC and COS-7 cells implied that there is a reduction in cell surface expression of LHRa when LHRd is present. Overall, these results imply expression of LHR splice variants is regulated in the human CL. Furthermore, during functional luteolysis a truncated variant could modulate the cell surface expression and activity of full-length LHR.

2006 ◽  
Vol 401 (1) ◽  
pp. 185-195 ◽  
Author(s):  
Chiharu Sogawa ◽  
Kei Kumagai ◽  
Norio Sogawa ◽  
Katsuya Morita ◽  
Toshihiro Dohi ◽  
...  

The NET [noradrenaline (norepinephrine) transporter], an Na+/Cl−-dependent neurotransmitter transporter, has several isoforms produced by alternative splicing in the C-terminal region, each differing in expression and function. We characterized the two major isoforms of human NET, hNET1, which has seven C-terminal amino acids encoded by exon 15, and hNET2, which has 18 amino acids encoded by exon 16, by site-directed mutagenesis in combination with NE (noradrenaline) uptake assays and cell surface biotinylation. Mutants lacking one third or more of the 24 amino acids encoded by exon 14 exhibited neither cell surface expression nor NE uptake activity, with the exception of the mutant lacking the last eight amino acids of hNET2, whose expression and uptake resembled that of the WT (wild-type). A triple alanine replacement of a candidate motif (ENE) in this region mimicked the influences of the truncation. Deletion of either the last three or another four amino acids of the C-terminus encoded by exon 15 in hNET1 reduced the cell surface expression and NE uptake, whereas deletion of all seven residues reduced the transport activity but did not affect the cell surface expression. Replacement of RRR, an endoplasmic reticulum retention motif, by alanine residues in the C-terminus of hNET2 resulted in a similar expression and function compared with the WT, while partly recovering the effects of the mutation of ENE. These findings suggest that in addition to the function of the C-terminus, the common proximal region encoded by exon 14 regulates the functional expression of splice variants, such as hNET1 and hNET2.


Biomolecules ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1356
Author(s):  
Péter Hollósi ◽  
Lóránd Váncza ◽  
Katalin Karászi ◽  
Katalin Dobos ◽  
Bálint Péterfia ◽  
...  

Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.


1998 ◽  
Vol 12 (3) ◽  
pp. 442-450 ◽  
Author(s):  
Ana C. Latronico ◽  
Yaohui Chai ◽  
Ivo J.P. Arnhold ◽  
Xuebo Liu ◽  
Berenice B. Mendonca ◽  
...  

Abstract In this report, the genomic DNA was examined from two siblings with gonadal LH resistance. A 46,XY pseudohermaphrodite presented with female external genitalia and his 46,XX sister exhibited menstrual irregularities (oligoamenorrhea) and infertility. Exons 1–11 of the LH receptor (LHR) gene were amplified by the PCR using different sets of intronic primers and were directly sequenced. Sequencing revealed that both individuals carried a deletion of nucleotides 1822–1827, resulting in the deletion of Leu-608 and Val-609 within the seventh transmembrane helix. This mutation was introduced into a recombinant human (h) LHR cDNA. Transfections of 293 cells with hLHR(wt) vs. hLHR(ΔL608,V609) revealed that very little of the mutant receptor was expressed at the cell surface. This was due to both a decrease in the total amount of receptor expressed as well as to an increased intracellular retention of the mutant receptor. In spite of the decreased cell surface expression of the mutant, sufficient amounts were present to allow for assessment of its functions. Equilibrium binding assays showed that the cell surface hLHR(ΔL608,V609) binds hCG with an affinity comparable to that of the wild-type receptor. However, the cells expressing the hLHR(ΔL608,V609) exhibit only a 1.5- to 2.4-fold stimulation of cAMP production in response to hCG. In contrast, cells expressing comparably low levels of hLHR(wt) responded to hCG with 11- to 30-fold increases of cAMP levels. Therefore, the testicular and ovarian unresponsiveness to LH in these patients appears to be due to a mutation of the hLHR gene in which Leu-608 and Val-609 are deleted. As a consequence, the majority of the mutant receptor is retained intracellularly. The small percentage of mutant receptor that is expressed at the cell surface binds hormone normally but is unable to activate Gs.


1997 ◽  
Vol 137 (5) ◽  
pp. 1161-1169 ◽  
Author(s):  
Nancy R. Gough ◽  
Douglas M. Fambrough

The extensively glycosylated lysosome-associated membrane proteins (LAMP)-2a, b, and c are derived from a single gene by alternative splicing that produces proteins with differences in the transmembrane and cytosolic domains. The lysosomal targeting signals reside in the cytosolic domain of these proteins. LAMPs are not restricted to lysosomes but can also be found in endosomes and at the cell surface. We investigated the subcellular distribution of chimeras comprised of the lumenal domain of avian LAMP-1 and the alternatively spliced domains of avian LAMP-2. Chimeras with the LAMP-2c cytosolic domain showed predominantly lysosomal distribution, while higher levels of chimeras with the LAMP-2a or b cytosolic domain were present at the cell surface. The increase in cell surface expression was due to differences in the recognition of the targeting signals and not saturation of intracellular trafficking machinery. Site-directed mutagenesis defined the COOH-terminal residue of the cytosolic tail as critical in governing the distributions of LAMP-2a, b, and c between intracellular compartments and the cell surface.


2006 ◽  
Vol 291 (4) ◽  
pp. H1822-H1828 ◽  
Author(s):  
Bi-Hua Tan ◽  
Carmen R. Valdivia ◽  
Chunhua Song ◽  
Jonathan C. Makielski

Mutations in the cardiac Na+ channel gene SCN5A cause loss of function and underlie arrhythmia syndromes. SCN5A in humans has two splice variants, one lacking a glutamine at position 1077 (Q1077del) and one containing Q1077. We investigated the effect of splice variant background on loss of function and rescue for G1406R, a mutation reported to cause Brugada syndrome. Mutant and wild-type (WT) channels in both backgrounds were transfected into HEK-293 cells and incubated for up to 72 h with and without mexiletine. At 8 h, neither current nor cell surface expression was observed for the mutant in either background, but both were present in WT channels. At 24 h, small (<10% compared with WT) currents were noted and accompanied by cell surface expression. At 48 h, current density was ∼40% of WT channels for the mutant in the Q1077del variant background but remained at <10% of WT channels in Q1077. Current levels were stable by 72 h. Coexpression with β1- or β3-subunits or insertion of the polymorphism H558R in the background did not significantly affect current expression. Mexiletine restored current density of the mutant channel in both backgrounds to nearly WT levels. The mutant channels also showed a negative shift in inactivation, slower recovery, and enhanced slow inactivation, consistent with a loss of function phenotype. These data show that a trafficking defect may be partial and time dependent and may differ with the splice variant background. Also, expression defects and gating abnormalities may contribute to loss of function for the same mutation.


Sign in / Sign up

Export Citation Format

Share Document