scholarly journals The Activity of Collagenase-1 Is Required for Keratinocyte Migration on a Type I Collagen Matrix

1997 ◽  
Vol 137 (6) ◽  
pp. 1445-1457 ◽  
Author(s):  
Brian K. Pilcher ◽  
Jo Ann Dumin ◽  
Barry D. Sudbeck ◽  
Stephen M. Krane ◽  
Howard G. Welgus ◽  
...  

We have shown in a variety of human wounds that collagenase-1 (MMP-1), a matrix metalloproteinase that cleaves fibrillar type I collagen, is invariably expressed by basal keratinocytes migrating across the dermal matrix. Furthermore, we have demonstrated that MMP-1 expression is induced in primary keratinocytes by contact with native type I collagen and not by basement membrane proteins or by other components of the dermal or provisional (wound) matrix. Based on these observations, we hypothesized that the catalytic activity of MMP-1 is necessary for keratinocyte migration on type I collagen. To test this idea, we assessed keratinocyte motility on type I collagen using colony dispersion and colloidal gold migration assays. In both assays, primary human keratinocytes migrated efficiently on collagen. The specificity of MMP-1 in promoting cell movement was demonstrated in four distinct experiments. One, keratinocyte migration was completely blocked by peptide hydroxymates, which are potent inhibitors of the catalytic activity of MMPs. Two, HaCaTs, a line of human keratinocytes that do not express MMP-1 in response to collagen, did not migrate on a type I collagen matrix but moved efficiently on denatured type I collagen (gelatin). EGF, which induces MMP-I production by HaCaT cells, resulted in the ability of these cells to migrate across a type I collagen matrix. Three, keratinocytes did not migrate on mutant type I collagen lacking the collagenase cleavage site, even though this substrate induced MMP-1 expression. Four, cell migration on collagen was completely blocked by recombinant tissue inhibitor of metalloproteinase-1 (TIMP-1) and by affinity-purified anti–MMP-1 antiserum. In addition, the collagen-mediated induction of collagenase-1 and migration of primary keratinocytes on collagen was blocked by antibodies against the α2 integrin subunit but not by antibodies against the α1 or α3 subunits. We propose that interaction of the α2β1 integrin with dermal collagen mediates induction of collagenase-1 in keratinocytes at the onset of healing and that the activity of collagenase-1 is needed to initiate cell movement. Furthermore, we propose that cleavage of dermal collagen provides keratinocytes with a mechanism to maintain their directionality during reepithelialization.

1990 ◽  
Vol 96 (2) ◽  
pp. 197-205
Author(s):  
M. Guo ◽  
K. Toda ◽  
F. Grinnell

The purpose of our studies was to learn more about the regulation of keratinocyte migration. Human keratinocytes freshly harvested from skin were relatively immotile cells, whereas keratinocytes harvested from cell culture migrated on type I collagen or fibronectin as measured in a phagokinesis assay. Development of migratory competence by keratinocytes varied depending on the culture substratum. Cells cultured on plastic were activated more quickly and to a greater extent than cells cultured on dermis. The effect of the culture substratum on migratory competence was reversible. That is, cells cultured on plastic showed reduced activity after subculture on dermis. Cells cultured on dermis showed increased activity after subculture on plastic. Freshly isolated as well as cultured keratinocytes contained beta 1 integrin subunits, but only cultured cells were able to organize the subunits into focal adhesions. These adhesion sites also contained vinculin. In epidermal explants, beta 1 integrin subunits were mostly in basal cells, often more prominent between lateral cell borders than at the epidermal-dermal interface. In keratinocytes that migrated out of skin explants, there appeared to be an increase in the intensity of beta 1 integrin subunit immunostaining, possibly because of the change in shape of migrating cells. Also, beta 1 integrin subunits were found around and beneath migrating keratinocytes. These results show that changes in the distribution of beta 1 integrin subunits accompany development of migratory competence.


Author(s):  
Philip Peter Roessler ◽  
Turgay Efe ◽  
Dieter Christian Wirtz ◽  
Frank Alexander Schildberg

AbstractCartilage regeneration with cell-free matrices has developed from matrix-associated autologous cartilage cell transplantation (MACT) over ten years ago. Adjustments to the legal framework and higher hurdles for cell therapy have led to the procedures being established as an independent alternative to MACT. These procedures, which can be classified as matrix-induced autologous cartilage regeneration (MACR), all rely on the chemotactic stimulus of a cross-linked matrix, which mostly consists of collagens. Given the example of a commercially available type I collagen hydrogel, the state of clinical experience with MACR shall be summarized and an outlook on the development of the method shall be provided. It has been demonstrated in the clinical case series summarized here over the past few years that the use of the matrix is not only safe but also yields good clinical-functional and MR-tomographic results for both small (~ 10 mm) and large (> 10 mm) focal cartilage lesions. Depending on the size of the defect, MACR with a collagen type I matrix plays an important role as an alternative treatment method, in direct competition with both: microfracture and MACT.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


1999 ◽  
Vol 112 (14) ◽  
pp. 2335-2345 ◽  
Author(s):  
B. Masson-Gadais ◽  
A. Pierres ◽  
A.M. Benoliel ◽  
P. Bongrand ◽  
J.C. Lissitzky

The adhesion of keratinocytes to type I collagen or laminin 5 was studied in a laminar flow chamber. These experiments provided an insight into the binding kinetics of integrins in their natural environment and the effects of monoclonal antibodies specific for (alpha) and beta chains. Cells driven by a force too low to alter the natural lifetime of a single bond displayed multiple arrests. Studying the frequency and duration of these arrests yielded fairly direct information on the rate of bond formation (on-rate) and dissociation (off-rate). Off-rate values obtained on collagen or laminin 5 (0.06 seconds-1) were tenfold lower than values determined on selectins. Bond stability was strongly regulated by anti-beta1 chain antibodies since the off-rate was decreased sixfold by activating antibody TS2/16 and increased fivefold by inhibitory antibodies Lia1/2 or P4C10, whereas neutral antibody K20 had no effect on this parameter. Binding frequencies were not significantly changed by all these antibodies. In contrast, both binding frequency and off-rate were altered by antibodies specific for the (alpha)2 chain, suggesting that these antibodies interfered with ligand recognition and also with the ligand-beta1 chain interactions responsible for bond stabilization. The latter hypothesis was supported by the finding that the partial alteration of (alpha)2 chain function by inhibiting antibodies was corrected by anti-beta1 chain antibody TS2/16. These results could not be ascribed to allosteric changes of the functional region of beta1 integrin subunits regulated by TS2/16 since there was no competition between the binding of TS2/16 and anti-(alpha)2 chain antibodies. Interpreted within the framework of current concepts of integrin-ligand binding topology, these data suggest that ligand-alpha chain interactions may be qualitatively important in ligand recognition and also influence the formation of the ligand-beta1 subunit bonding involved in stabilization of the ligand-integrin complex by regulating its dissociation rate.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Senthilkumar Muthusamy ◽  
Asha V Nath ◽  
Shilpa Ajit ◽  
Anil K PR

Introduction: Use of cardiac mesenchymal cells (CMCs) has been shown to improve cardiac function following myocardial infarction. Main drawback in cardiac cell therapy is the major loss of injected cells within few hours. Increase the retention of these injected cells could increase their efficacy, where cardiac patches with various cell types showed better outcome. Among, collagen patch plays lead role as a cell-laden matrix in cardiac tissue engineering. Creating a detailed understanding of how collagen matrix changes the cellular phenotype could provide seminal insights to regeneration therapy. Hypothesis: Growing CMCs in three dimensional (3D) collagen matrix could alter the expression of extracellular matrix (ECM) and adhesion molecules, which may enhance their efficacy. Methods: The bovine type I collagen was chemically modified and solubilized in culture medium with photo-initiator. The mouse CMCs were isolated and resuspended in collagen solution, printed using 3D bioprinter and UV-crosslinked to form 3D-CMC construct. The 3D-CMC construct was submerged in growth medium and cultured for 48h and analyzed for the expression of ECM and adhesion molecules (n=5/group). CMCs cultured in regular plastic tissue culture dish was used as control. Results: RT profiler array showed changes in the ECM and adhesion molecules expression, specifically certain integrins and matrix metalloproteinases (MMPs) in CMCs cultured 3D collagen construct compared to 2D monolayer. Subsequent qRT-PCR analysis revealed significant (p<0.01) upregulation of integrins such as Itga2 (2.96±0.13), Itgb1 (3.18±0.2) and Itgb3 (2.4±0.27) and MMPs such as MMP13 (37.2±3.36), MMP9 (5.23±1.06) and MMP3 (7.14±2.07). Western blot analysis further confirmed significant elevation of these integrins and matrix metalloproteinases at protein level. Collagen encapsulation did not alter the expression of N-cadherin in CMCs, which is a potential mesenchymal cadherin adhesion molecule. Conclusion: Integrin αβ heterodimers transduce signals that facilitate cell homing, migration, survival and differentiation. Similarly, MMPs plays vital role in cell migration and proliferation. Our results demonstrate that the 3D-collagen Niche enhances the expression of certain integrins and MMPs in CMCs. This suggest that the efficacy of CMCs could be magnified by providing 3D architecture with collagen matrix and further in vivo experiments would reveal functional benefits from CMCs for clinical use.


2003 ◽  
Vol 774 ◽  
Author(s):  
Matthew J. Olszta ◽  
Elliot P. Douglas ◽  
Laurie B. Gower

AbstractIntrafibrillar mineralization of type-I collagen with hydroxyapatite (HA) is the basis of the complex biological composite known as bone, which from a material science perspective is a fascinating example of an interpenetrating bioceramic composite. Using a polymer-induced liquid-precursor (PILP) process, collagen substrates were highly infiltrated with a liquid-phase mineral precursor to calcium carbonate (CaCO3). At sections of partially mineralized collagen, banded mineral patterns were observed perpendicular to the collagen fibrils, while other fibrils were completely mineralized. An acid etch, used to preferentially remove superficial mineral, further revealed such banded patterns in fully mineralized samples. Removal of the collagen matrix with a dilute hypochlorite solution showed an interpenetrating mineral phase, with mineral disks that spanned the diameter of the pre-existing collagen fibrils, supporting our hypothesis that intrafibrillar mineralization can be achieved via capillary action applied to a liquid-phase mineral precursor.


2014 ◽  
Vol 307 (8) ◽  
pp. L632-L642 ◽  
Author(s):  
Richard Seonghun Nho ◽  
Jintaek Im ◽  
Yen-Yi Ho ◽  
Polla Hergert

Idiopathic pulmonary fibrosis (IPF) is a lethal and progressive lung disease characterized by persistent (myo)fibroblasts and the relentless accumulation of collagen matrix. Unlike normal lung fibroblasts, IPF lung fibroblasts have suppressed forkhead box O3a (FoxO3a) activity, which allows them to expand in this diseased environment. microRNA-96 (miR-96) has recently been found to directly bind to the 3′-untranslated region of FoxO3a mRNA, which subsequently inhibits its function. We examined whether aberrantly low FoxO3a expression is in part due to increased miR-96 levels in IPF fibroblasts on polymerized collagen, thereby causing IPF fibroblasts to maintain their pathological properties. miR-96 expression was upregulated in IPF fibroblasts compared with control fibroblasts when cultured on collagen. In contrast, FoxO3a mRNA levels were reduced in most IPF fibroblasts. However, when miR-96 function was inhibited, FoxO3a mRNA and protein expression were increased, suppressing IPF fibroblast proliferation and promoting their cell death in a dose-dependent fashion. Likewise, FoxO3a and its target proteins p21, p27, and Bim expression was also increased in the presence of a miR-96 inhibitor in IPF fibroblasts. However, when control fibroblasts were treated with miR-96 mimic, FoxO3a, p27, p21, and Bim mRNA and protein levels were decreased. In situ hybridization analysis further revealed the presence of enhanced miR-96 expression in cells within the fibroblastic foci of IPF lung tissue. Our results suggest that when IPF fibroblasts interact with collagen-rich matrix, pathologically altered miR-96 expression inhibits FoxO3a function, causing IPF fibroblasts to maintain their pathological phenotype, which may contribute to the progression of IPF.


Sign in / Sign up

Export Citation Format

Share Document