scholarly journals Apical Enrichment of Human EGF Precursor in Madin-Darby Canine Kidney Cells Involves Preferential Basolateral Ectodomain Cleavage Sensitive to a Metalloprotease Inhibitor

1997 ◽  
Vol 138 (4) ◽  
pp. 747-758 ◽  
Author(s):  
Peter J. Dempsey ◽  
Katherine S. Meise ◽  
Yoshino Yoshitake ◽  
Katsuzo Nishikawa ◽  
Robert J. Coffey

EGF precursor (proEGF) is a member of the family of membrane-anchored EGF-like growth factors that bind with high affinity to the epidermal growth factor receptor (EGFR). In contrast to human transforming growth factor-α precursor (proTGFα), which is sorted basolaterally in Madin-Darby canine kidney (MDCK) cells (Dempsey, P., and R. Coffey, 1994. J. Biol. Chem. 269:16878–16889), we now demonstrate that human proEGF overexpressed in MDCK cells is found predominantly at the apical membrane domain under steady-state conditions. Nascent proEGF (185 kD) is not sorted but is delivered equally to the apical and basolateral membranes, where it is proteolytically cleaved within its ectodomain to release a soluble 170-kD EGF form into the medium. Unlike the fate of TGFα in MDCK cells, the soluble 170-kD EGF species accumulates in the medium, does not interact with the EGFR, and is not processed to the mature 6-kD peptide. We show that the rate of ectodomain cleavage of 185-kD proEGF is fourfold greater at the basolateral surface than at the apical surface and is sensitive to a metalloprotease inhibitor, batimastat. Batimastat dramatically inhibited the release of soluble 170-kD EGF into the apical and basal medium by 7 and 60%, respectively, and caused a concordant increase in the expression of 185-kD proEGF at the apical and basolateral cell surfaces of 150 and 280%, respectively. We propose that preferential ectodomain cleavage at the basolateral surface contributes to apical domain localization of 185-kD proEGF in MDCK cells, and this provides a novel mechanism to achieve a polarized distribution of cell surface membrane proteins under steady-state conditions. In addition, differences in disposition of EGF and TGFα in polarized epithelial cells offer a new conceptual framework to consider the actions of these polypeptide growth factors.

1989 ◽  
Vol 109 (5) ◽  
pp. 2117-2127 ◽  
Author(s):  
M P Lisanti ◽  
A Le Bivic ◽  
M Sargiacomo ◽  
E Rodriguez-Boulan

We used domain-selective biotinylation/125I-streptavidin blotting (Sargiacomo, M., M. P. Lisanti, L. Graeve, A. Le Bivic, and E. Rodriguez-Boulan. 1989 J. Membr. Biol. 107:277-286), in combination with lectin precipitation, to analyze the apical and basolateral glycoprotein composition of Madin-Darby canine kidney (MDCK) cells and to explore the role of glycosylation in the targeting of membrane glycoproteins. All six lectins used recognized both apical and basolateral glycoproteins, indicating that none of the sugar moieties detected were characteristic of the particular epithelial cell surface. Pulse-chase experiments coupled with domain-selective glycoprotein recovery were designed to detect the initial appearance of newly synthesized glycoproteins at the apical or basolateral cell surface. After a short pulse with a radioactive precursor, glycoproteins reaching each surface were biotinylated, extracted, and recovered via precipitation with immobilized streptavidin. Several basolateral glycoproteins (including two sulfated proteins) and at least two apical glycoproteins (one of them the major sulfated protein of MDCK cells) appeared at the corresponding surface after 20-40 min of chase, but were not detected in the opposite surface, suggesting that they were sorted intracellularly and vectorially delivered to their target membrane. Several "peripheral" apical proteins were detected at maximal levels on the apical surface immediately after the 15-min pulse, suggesting a very fast intracellular transit. Finally, domain-selective labeling of surface carbohydrates with biotin hydrazide (after periodate oxidation) revealed strikingly different integral and peripheral glycoprotein patterns, resembling the Con A pattern, after labeling with sulfo-N-hydroxy-succinimido-biotin. The approaches described here should be useful in characterizing the steady-state distribution and biogenesis of endogenous cell surface components in a variety of epithelial cell lines.


2010 ◽  
Vol 21 (21) ◽  
pp. 3654-3668 ◽  
Author(s):  
Jose V. Moyano ◽  
Patricia G. Greciano ◽  
Mary M. Buschmann ◽  
Manuel Koch ◽  
Karl S. Matlin

Laminin (LM)-332 is an extracellular matrix protein that plays a structural role in normal tissues and is also important in facilitating recovery of epithelia from injury. We have shown that expression of LM-332 is up-regulated during renal epithelial regeneration after ischemic injury, but the molecular signals that control expression are unknown. Here, we demonstrate that in Madin-Darby canine kidney (MDCK) epithelial cells LM-332 expression occurs only in subconfluent cultures and is turned-off after a polarized epithelium has formed. Addition of active transforming growth factor (TGF)-β1 to confluent MDCK monolayers is sufficient to induce transcription of the LM α3 gene and LM-332 protein expression via the TGF-β type I receptor (TβR-I) and the Smad2–Smad4 complex. Significantly, we show that expression of LM-332 in MDCK cells is an autocrine response to endogenous TGF-β1 secretion and activation mediated by integrin αVβ3 because neutralizing antibodies block LM-332 production in subconfluent cells. In confluent cells, latent TGF-β1 is secreted apically, whereas TβR-I and integrin αVβ3 are localized basolaterally. Disruption of the epithelial barrier by mechanical injury activates TGF-β1, leading to LM-332 expression. Together, our data suggest a novel mechanism for triggering the production of LM-332 after epithelial injury.


1999 ◽  
Vol 145 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Rosa Puertollano ◽  
Fernando Martín-Belmonte ◽  
Jaime Millán ◽  
María del Carmen de Marco ◽  
Juan P. Albar ◽  
...  

The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.


1987 ◽  
Vol 105 (4) ◽  
pp. 1623-1635 ◽  
Author(s):  
G van Meer ◽  
E H Stelzer ◽  
R W Wijnaendts-van-Resandt ◽  
K Simons

To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.


1987 ◽  
Vol 104 (2) ◽  
pp. 231-241 ◽  
Author(s):  
M J Rindler ◽  
I E Ivanov ◽  
D D Sabatini

The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D. D. Sabatini, 1985, J. Cell Biol., 100:136-151). The microtubule-depolymerizing agents colchicine and nocodazole, as well as the microtubule assembly-promoting drug taxol, were found to interfere with the normal polarized delivery and exclusive segregation of hemagglutinin (HA) to the apical surface but not with the delivery and initial accumulation of G on the basolateral surface. Immunofluorescence analysis of permeabilized monolayers of influenza-infected MDCK cells treated with the microtubule-acting drugs demonstrated the presence of substantial amounts of HA protein on both the apical and basolateral surfaces. Moreover, in cells infected with the wild-type influenza virus, particles budded from both surfaces. Viral counts in electron micrographs showed that approximately 40% of the released viral particles accumulated in the intercellular spaces or were trapped between the cell and monolayer and the collagen support as compared to less than 1% on the basolateral surface of untreated infected cells. The effect of the microtubule inhibitors was not a result of a rapid redistribution of glycoprotein molecules initially delivered to the apical surface since a redistribution was not observed when the inhibitors were added to the cells after the HA was permitted to reach the apical surface at the permissive temperature and the synthesis of new HA was inhibited with cycloheximide. The altered segregation of the HA protein that occurs may result from the dispersal of the Golgi apparatus induced by the inhibitors or from the disruption of putative microtubules containing tracks that could direct vesicles from the trans Golgi apparatus to the cell surface. Since the vesicular stomatitis virus G protein is basolaterally segregated even when the Golgi elements are dispersed and hypothetical tracks disrupted, it appears that the two viral envelope glycoproteins are segregated by fundamentally different mechanisms and that the apical surface may be incapable of accepting vesicles carrying the G protein.


2001 ◽  
Vol 12 (6) ◽  
pp. 1869-1883 ◽  
Author(s):  
Rosa Puertollano ◽  
José Angel Martı́nez-Menárguez ◽  
Alicia Batista ◽  
José Ballesta ◽  
Miguel Angel Alonso

The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine −3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.


1988 ◽  
Vol 107 (1) ◽  
pp. 221-230 ◽  
Author(s):  
B B Finlay ◽  
B Gumbiner ◽  
S Falkow

Many intracellular parasites are capable of penetrating host epithelial barriers. To study this process in more detail we examined the interactions between the pathogenic bacteria Salmonella choleraesuis and polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells grown on membrane filters. Association of bacteria with the MDCK cell apical surface was an active event, requiring bacterial RNA and protein synthesis, and was blocked by low temperatures. Salmonella were internalized within a membrane-bound vacuole and exhibited penetration through, but not between MDCK cells. A maximum of 14 Salmonella per MDCK cell crossed the monolayer per hour to the basolateral surface yet the monolayer remained viable and impermeable to Escherichia coli. Apical S. choleraesuis infection resulted in an increase in paracellular permeability but the MDCK intercellular contacts were not significantly disrupted. Basolateral S. choleraesuis infection was inefficient, and only small numbers of S. choleraesuis penetrated to the apical medium.


2000 ◽  
Vol 11 (6) ◽  
pp. 2033-2045 ◽  
Author(s):  
Fernando Martı́n-Belmonte ◽  
Rosa Puertollano ◽  
Jaime Millán ◽  
Miguel A. Alonso

The MAL proteolipid has been recently demonstrated as being necessary for correct apical sorting of the transmembrane influenza virus hemagglutinin (HA) in Madin–Darby canine kidney (MDCK) cells. The fact that, in contrast to MDCK cells, Fischer rat thyroid (FRT) cells target the majority of glycosylphosphatidylinositol (GPI)-anchored proteins to the basolateral membrane provides us with the opportunity to determine the role of MAL in apical transport of membrane proteins under conditions in which the majority of GPI-anchored proteins are (MDCK cells) or are not (FRT cells) targeted to the apical surface. Using an antisense oligonucleotide-based strategy to deplete endogenous MAL, we have observed that correct transport of apical transmembrane proteins associated (HA) or not (exogenous neurotrophin receptor and endogenous dipeptidyl peptidase IV) with lipid rafts, as well as that of the bulk of endogenous apical membrane, takes place in FRT cells by a pathway that requires normal MAL levels. Even transport of placental alkaline phosphatase, a GPI-anchored protein that is targeted apically in FRT cells, was dependent on normal MAL levels. Similarly, in addition to the reported effect of MAL on HA transport, depletion of MAL in MDCK cells caused a dramatic reduction in the apical delivery of the GPI-anchored gD1-DAF protein, neurotrophin receptor, and the bulk of membrane proteins. These results suggest that MAL is necessary for the overall apical transport of membrane proteins in polarized MDCK and FRT cells.


2007 ◽  
Vol 18 (6) ◽  
pp. 2203-2215 ◽  
Author(s):  
David Cohen ◽  
Yuan Tian ◽  
Anne Müsch

Kidney-derived Madin Darby canine kidney (MDCK) cells form lumina at their apices, and target luminal proteins to an intracellular vacuolar apical compartment (VAC) when prevented from polarizing. Hepatocytes, by contrast, organize their luminal surfaces (the bile canaliculi; BC) between their lateral membranes, and, when nonpolarized, they display an intracellular luminal compartment that is distinct from the VACs of MDCK cells. Overexpression of the serine/threonine kinase Par1b/EMK1/MARK2 induces BC-like lateral lumina and a hepatic-type intracellular luminal compartment in MDCK cells, suggesting a role for Par1b in the branching decision between kidney- and hepatic-type epithelial phenotypes. Here, we report that Par1b promotes lateral lumen polarity in MDCK cells independently of Ca2+-mediated cell–cell adhesion by inhibiting myosin II in a rho kinase-dependent manner. Polarization was inhibited by E-cadherin depletion but promoted by an adhesion-defective E-cadherin mutant. By contrast, apical surface formation in control MDCK cells required Ca2+-dependent cell–cell adhesion, but it occurred in the absence of E-cadherin. We propose that E-cadherin, when in an adhesion-incompetent state at the lateral domain, serves as targeting patch for the establishment of lateral luminal surfaces. E-cadherin depletion also reverted the hepatic-type intracellular luminal compartment in Par1b-MDCK cells to VACs characteristic of control MDCK cells, indicating a novel link between E-cadherin and luminal protein targeting.


Sign in / Sign up

Export Citation Format

Share Document