scholarly journals A PDZ-containing Scaffold Related to the Dystrophin Complex at the Basolateral Membrane of Epithelial Cells

1999 ◽  
Vol 145 (2) ◽  
pp. 391-402 ◽  
Author(s):  
Amy M. Kachinsky ◽  
Stanley C. Froehner ◽  
Sharon L. Milgram

Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.

2000 ◽  
Vol 113 (15) ◽  
pp. 2715-2724
Author(s):  
N.Y. Loh ◽  
S.E. Newey ◽  
K.E. Davies ◽  
D.J. Blake

Dystrophin is the key component in the assembly and maintenance of the dystrophin-associated protein complex (DPC) in skeletal muscle. In kidney, dystroglycan, an integral component of the DPC, is involved in kidney epithelial morphogenesis, suggesting that the DPC is important in linking the extracellular matrix to the internal cytoskeleton of kidney epithelia. Here, we have investigated the molecular architecture of dystrophin-like protein complexes in kidneys from normal and dystrophin-deficient mice. Using isoform-specific antibodies, we show that the different cell types that make up the kidney maintain different dystrophin-like complexes. These complexes can be broadly grouped according to their dystrobrevin content: beta-dystrobrevin containing complexes are present at the basal region of renal epithelial cells, whilst alpha-dystrobrevin-1 containing complexes are found in endothelial and smooth muscle cells. Furthermore, these complexes are maintained even in the absence of all dystrophin isoforms. Thus our data suggest that the functions and assembly of the dystrophin-like complexes in kidney differ from those in skeletal muscle and implicate a protein other than dystrophin as the primary molecule in the assembly and maintenance of kidney complexes. Our findings also provide a possible explanation for the lack of kidney pathology in Duchenne muscular dystrophy patients and mice lacking all dystrophin isoforms.


2003 ◽  
Vol 284 (6) ◽  
pp. C1633-C1644 ◽  
Author(s):  
Mohammed A. Khadeer ◽  
Zhihui Tang ◽  
Harriet S. Tenenhouse ◽  
Maribeth V. Eiden ◽  
Heini Murer ◽  
...  

We previously demonstrated that inhibition of Na-dependent phosphate (Pi) transport in osteoclasts led to reduced ATP levels and diminished bone resorption. These findings suggested that Na/Picotransporters in the osteoclast plasma membrane provide Pifor ATP synthesis and that the osteoclast may utilize part of the Pireleased from bone resorption for this purpose. The present study was undertaken to define the cellular localization of Na/Picotransporters in the mouse osteoclast and to identify the proteins with which they interact. Using glutathione S-transferase (GST) fusion constructs, we demonstrate that the type IIa Na/Picotransporter (Npt2a) in osteoclast lysates interacts with the Na/H exchanger regulatory factor, NHERF-1, a PDZ protein that is essential for the regulation of various membrane transporters. In addition, NHERF-1 in osteoclast lysates interacts with Npt2a in spite of deletion of a putative PDZ-binding domain within the carboxy terminus of Npt2a. In contrast, deletion of the carboxy-terminal TRL amino acid motif of Npt2a significantly reduced its interaction with NHERF-1 in kidney lysates. Studies in osteoclasts transfected with green fluorescent protein-Npt2a constructs indicated that Npt2a colocalizes with NHERF-1 and actin at or near the plasma membrane of the osteoclast and associates with ezrin, a linker protein associated with the actin cytoskeleton, likely via NHERF-1. Furthermore, we demonstrate by RT/PCR of osteoclast RNA and in situ hybridization that the type III Na/Picotransporter, PiT-1, is also expressed in mouse osteoclasts. To examine the cellular distribution of PiT-1, we infected mouse osteoclasts with a retroviral vector encoding PiT-1 fused to an epitope tag. PiT-1 colocalizes with actin and is present on the basolateral membrane of the polarized osteoclast, similar to that previously reported for Npt2a. Taken together, our data suggest that association of Npt2a with NHERF-1, ezrin, and actin, and of PiT-1 with actin, may be responsible for membrane sorting and regulation of these Na/Picotransporters in the osteoclast.


2019 ◽  
Vol 20 (11) ◽  
pp. 2776 ◽  
Author(s):  
Emilia Sokołowska ◽  
Agnieszka Urszula Błachnio-Zabielska

The gene delivery to skeletal muscles is a promising strategy for the treatment of both muscular disorders (by silencing or overexpression of specific gene) and systemic secretion of therapeutic proteins. The use of a physical method like electroporation with plate or needle electrodes facilitates long-lasting gene silencing in situ. It has been reported that electroporation enhances the expression of the naked DNA gene in the skeletal muscle up to 100 times and decreases the changeability of the intramuscular expression. Coelectransfer of reporter genes such as green fluorescent protein (GFP), luciferase or beta-galactosidase allows the observation of correctly performed silencing in the muscles. Appropriate selection of plasmid injection volume and concentration, as well as electrotransfer parameters, such as the voltage, the length and the number of electrical pulses do not cause long-term damage to myocytes. In this review, we summarized the electroporation methodology as well as the procedure of electrotransfer to the gastrocnemius, tibialis, soleus and foot muscles and compare their advantages and disadvantages.


2007 ◽  
Vol 81 (10) ◽  
pp. 5046-5057 ◽  
Author(s):  
Svetlana Atasheva ◽  
Rodion Gorchakov ◽  
Robert English ◽  
Ilya Frolov ◽  
Elena Frolova

ABSTRACT Sindbis virus (SINV) is one of almost 30 currently known alphaviruses. In infected cells, it produces only a few proteins that function in virus replication and interfere with the development of the antiviral response. One of the viral nonstructural proteins, nsP2, not only exhibits protease and RNA helicase activities that are directly involved in viral RNA replication but also plays critical roles in the development of transcriptional and translational shutoffs in the SINV-infected cells. These multiple activities of nsP2 complicate investigations of this protein's functions and further understanding of its structure. Using a transposon-based approach, we generated a cDNA library of SINV genomes with a green fluorescent protein (GFP) gene randomly inserted into nsP2 and identified a number of sites that can be used for GFP cloning without a strong effect on virus replication. Recombinant SIN viruses encoding nsP2/GFP chimeric protein were capable of growth in tissue culture and interfering with cellular functions. SINV, expressing GFP in the nsP2, was used to isolate nsP2-specific protein complexes formed in the cytoplasm of the infected cells. These complexes contained viral nsPs, all of the cellular proteins that we previously coisolated with SINV nsP3, and some additional protein factors that were not found before in detectable concentrations. The random insertion library-based approach, followed by the selection of the viable variants expressing heterologous proteins, can be applied for mapping the domain structure of the viral nonstructural and structural proteins, cloning of peptide tags for isolation of the protein-specific complexes, and studying their formation by using live-cell imaging. This approach may also be applicable to presentation of additional antigens and retargeting of viruses to new receptors.


2004 ◽  
Vol 24 (20) ◽  
pp. 9102-9123 ◽  
Author(s):  
Shaohui Huang ◽  
Larry Lifshitz ◽  
Varsha Patki-Kamath ◽  
Richard Tuft ◽  
Kevin Fogarty ◽  
...  

ABSTRACT A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cδ1 (PLCδ1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCδ1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling.


2011 ◽  
Vol 301 (5) ◽  
pp. C1239-C1250 ◽  
Author(s):  
Joseph A. Roche ◽  
Diana L. Ford-Speelman ◽  
Lisa W. Ru ◽  
Allison L. Densmore ◽  
Renuka Roche ◽  
...  

Electroporation (EP) is used to transfect skeletal muscle fibers in vivo, but its effects on the structure and function of skeletal muscle tissue have not yet been documented in detail. We studied the changes in contractile function and histology after EP and the influence of the individual steps involved to determine the mechanism of recovery, the extent of myofiber damage, and the efficiency of expression of a green fluorescent protein (GFP) transgene in the tibialis anterior (TA) muscle of adult male C57Bl/6J mice. Immediately after EP, contractile torque decreased by ∼80% from pre-EP levels. Within 3 h, torque recovered to ∼50% but stayed low until day 3. Functional recovery progressed slowly and was complete at day 28. In muscles that were depleted of satellite cells by X-irradiation, torque remained low after day 3, suggesting that myogenesis is necessary for complete recovery. In unirradiated muscle, myogenic activity after EP was confirmed by an increase in fibers with central nuclei or developmental myosin. Damage after EP was confirmed by the presence of necrotic myofibers infiltrated by CD68+ macrophages, which persisted in electroporated muscle for 42 days. Expression of GFP was detected at day 3 after EP and peaked on day 7, with ∼25% of fibers transfected. The number of fibers expressing green fluorescent protein (GFP), the distribution of GFP+ fibers, and the intensity of fluorescence in GFP+ fibers were highly variable. After intramuscular injection alone, or application of the electroporating current without injection, torque decreased by ∼20% and ∼70%, respectively, but secondary damage at D3 and later was minimal. We conclude that EP of murine TA muscles produces variable and modest levels of transgene expression, causes myofiber damage due to the interaction of intramuscular injection with the permeabilizing current, and that full recovery requires myogenesis.


2007 ◽  
Vol 81 (22) ◽  
pp. 12394-12405 ◽  
Author(s):  
Tracy Terry-Allison ◽  
Colton A. Smith ◽  
Neal A. DeLuca

ABSTRACT The expression of herpes simplex virus (HSV) genomes in the absence of viral regulatory proteins in sensory neurons is poorly understood. Previously, our group reported an HSV immediate early (IE) mutant (d109) unable to express any of the five IE genes and encoding a model human cytomegalovirus immediate early promoter-green fluorescent protein (GFP) transgene. In cultured cells, GFP expressed from this mutant was observed in only a subset of infected cells. The subset exhibited cell type dependence, as the fractions of GFP-expressing cells varied widely among the cell types examined. Herein, we characterize this mutant in murine embryonic trigeminal ganglion (TG) cultures. We found that d109 was nontoxic to neural cultures and persisted in the cultures throughout their life spans. Unlike with some of the cultured cell lines and strains, expression of the GFP transgene was observed in a surprisingly large subset of neurons. However, very few nonneuronal cells expressed GFP. The abilities of ICP0 and an inhibitor of histone deacetylase, trichostatin A (TSA), to activate GFP expression from nonexpressing cells were also compared. The provision of ICP0 by infection with d105 reactivated quiescent genomes in nearly every cell, whereas reactivation by TSA was much more limited and restricted to the previously nonexpressing neurons. Moreover, we found that d109, which does not express ICP0, consistently reactivated HSV type 1 (KOS) in latently infected adult TG cultures. These results suggest that the state of persisting HSV genomes in some TG neurons may be more dynamic and more easily activated than has been observed with nonneuronal cells.


2008 ◽  
Vol 411 (2) ◽  
pp. 441-448 ◽  
Author(s):  
Shu-Chin Yip ◽  
Robert J. Eddy ◽  
Angie M. Branch ◽  
Huan Pang ◽  
Haiyan Wu ◽  
...  

Class IA PI3Ks (phosphoinositide 3-kinases) generate the secondary messenger PtdIns(3,4,5)P3, which plays an important role in many cellular responses. The accumulation of PtdIns(3,4,5)P3 in cell membranes is routinely measured using GFP (green fluorescent protein)-labelled PH (pleckstrin homology) domains. However, the kinetics of membrane PtdIns(3,4,5)P3 synthesis and turnover as detected by PH domains have not been validated using an independent method. In the present study, we measured EGF (epidermal growth factor)-stimulated membrane PtdIns(3,4,5)P3 production using a specific monoclonal anti-PtdIns(3,4,5)P3 antibody, and compared the results with those obtained using PH-domain-dependent methods. Anti-PtdIns(3,4,5)P3 staining rapidly accumulated at the leading edge of EGF-stimulated carcinoma cells. PtdIns(3,4,5)P3 levels were maximal at 1 min, and returned to basal levels by 5 min. In contrast, membrane PtdIns(3,4,5)P3 production, measured by the membrane translocation of an epitope-tagged BTKPH (PH domain of Bruton's tyrosine kinase), remained approx. 2-fold above basal level throughout 4–5 min of EGF stimulation. To determine the reason for this disparity, we measured the rate of PtdIns(3,4,5)P3 hydrolysis by measuring the decay of the PtdIns(3,4,5)P3 signal after LY294002 treatment of EGF-stimulated cells. LY294002 abolished anti-PtdIns(3,4,5)P3 membrane staining within 10 s of treatment, suggesting that PtdIns(3,4,5)P3 turnover occurs within seconds of synthesis. In contrast, BTKPH membrane recruitment, once initiated by EGF, was relatively insensitive to LY294002. These data suggest that sequestration of PtdIns(3,4,5)P3 by PH domains may affect the apparent kinetics of PtdIns(3,4,5)P3 accumulation and turnover; consistent with this hypothesis, we found that GRP-1 (general receptor for phosphoinositides 1) PH domains [which, like BTK, are specific for PtdIns(3,4,5)P3] inhibit PTEN (phosphatase and tensin homologue deleted on chromosome 10) dephosphorylation of PtdIns(3,4,5)P3in vitro. These data suggest that anti-PtdIns(3,4,5)P3 antibodies are a useful tool to detect localized PtdIns(3,4,5)P3, and illustrate the importance of using multiple approaches for the estimation of membrane phosphoinositides.


1998 ◽  
Vol 143 (2) ◽  
pp. 501-510 ◽  
Author(s):  
Péter Várnai ◽  
Tamás Balla

Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)δ PH domain–green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCδ PH domain known to form critical contacts with PtdIns(4,5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol– labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.


Sign in / Sign up

Export Citation Format

Share Document