scholarly journals Hcp-1, a Protein Involved in Chromosome Segregation, Is Localized to the Centromere of Mitotic Chromosomes in Caenorhabditis elegans

1999 ◽  
Vol 147 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Landon L. Moore ◽  
Mike Morrison ◽  
Mark B. Roth

To learn more about holocentric chromosome structure and function, we generated a monoclonal antibody (mAb), 6C4, that recognizes the poleward face of mitotic chromosomes in Caenorhabditis elegans. Early in mitosis, mAb 6C4 stains dots throughout the nucleoplasm. Later in prophase, mAb 6C4 stains structures on opposing faces of chromosomes which orient towards the centrosomes at metaphase. Colocalization with an antibody against a centromeric histone H3–like protein and the MPM-2 antibody, which identifies a kinetochore-associated phosphoepitope present in a variety of organisms, shows that the mAb 6C4 staining is present adjacent to the centromere. Expression screening using mAb 6C4 identified a protein in C. elegans that we named HCP-1 (for holocentric protein 1). We also identified a second protein from the C. elegans genome sequence database, HCP-2, that is 54% similar to HCP-1. When expression of HCP-1 is reduced by RNA interference (RNAi), staining with mAb 6C4 is eliminated, indicating that hcp-1 encodes the major mAb 6C4 antigen. RNAi with hcp-1 and hcp-2 together results in aberrant anaphases and embryonic arrest at ∼100 cells with different amounts of DNA in individual nuclei. These results suggest that HCP-1 is a centromere-associated protein that is involved in the fidelity of chromosome segregation.

2001 ◽  
Vol 153 (6) ◽  
pp. 1227-1238 ◽  
Author(s):  
Mary Howe ◽  
Kent L. McDonald ◽  
Donna G. Albertson ◽  
Barbara J. Meyer

Macromolecular structures called kinetochores attach and move chromosomes within the spindle during chromosome segregation. Using electron microscopy, we identified a structure on the holocentric mitotic and meiotic chromosomes of Caenorhabditis elegans that resembles the mammalian kinetochore. This structure faces the poles on mitotic chromosomes but encircles meiotic chromosomes. Worm kinetochores require the evolutionarily conserved HIM-10 protein for their structure and function. HIM-10 localizes to the kinetochores and mediates attachment of chromosomes to the spindle. Depletion of HIM-10 disrupts kinetochore structure, causes a failure of bipolar spindle attachment, and results in chromosome nondisjunction. HIM-10 is related to the Nuf2 kinetochore proteins conserved from yeast to humans. Thus, the extended kinetochores characteristic of C. elegans holocentric chromosomes provide a guide to the structure, molecular architecture, and function of conventional kinetochores.


2017 ◽  
Author(s):  
Ye Hong ◽  
Remi Sonneville ◽  
Bin Wang ◽  
Viktor Scheidt ◽  
Bettina Meier ◽  
...  

AbstractFaithful chromosome segregation and genome maintenance requires the removal of all DNA bridges that physically link chromosomes before cells divide. Using C. elegans embryos we show that the LEM-3/Ankle1 nuclease defines a new genome integrity mechanism by processing DNA bridges right before cells divide. LEM-3 acts at the midbody, the structure where abscission occurs at the end of cytokinesis. LEM-3 localization depends on factors needed for midbody assembly, and LEM-3 accumulation is increased and prolonged when chromatin bridges are trapped at the cleavage plane. LEM-3 locally processes chromatin bridges that arise from incomplete DNA replication, unresolved recombination intermediates or the perturbance of chromosome structure. Proper LEM-3 midbody localization and function is regulated by AIR-2/Aurora B kinase. Strikingly, LEM-3 act cooperatively with the BRC-1/BRCA1 homologous recombination factor to promote genome integrity. These findings provide a molecular basis for the suspected role of the LEM-3 orthologue Ankle1 in human breast cancer.


2001 ◽  
Vol 153 (6) ◽  
pp. 1209-1226 ◽  
Author(s):  
Karen Oegema ◽  
Arshad Desai ◽  
Sonja Rybina ◽  
Matthew Kirkham ◽  
Anthony A. Hyman

In all eukaryotes, segregation of mitotic chromosomes requires their interaction with spindle microtubules. To dissect this interaction, we use live and fixed assays in the one-cell stage Caenorhabditis elegans embryo. We compare the consequences of depleting homologues of the centromeric histone CENP-A, the kinetochore structural component CENP-C, and the chromosomal passenger protein INCENP. Depletion of either CeCENP-A or CeCENP-C results in an identical “kinetochore null” phenotype, characterized by complete failure of mitotic chromosome segregation as well as failure to recruit other kinetochore components and to assemble a mechanically stable spindle. The similarity of their depletion phenotypes, combined with a requirement for CeCENP-A to localize CeCENP-C but not vice versa, suggest that a key step in kinetochore assembly is the recruitment of CENP-C by CENP-A–containing chromatin. Parallel analysis of CeINCENP-depleted embryos revealed mitotic chromosome segregation defects different from those observed in the absence of CeCENP-A/C. Defects are observed before and during anaphase, but the chromatin separates into two equivalently sized masses. Mechanically stable spindles assemble that show defects later in anaphase and telophase. Furthermore, kinetochore assembly and the recruitment of CeINCENP to chromosomes are independent. These results suggest distinct roles for the kinetochore and the chromosomal passengers in mitotic chromosome segregation.


1994 ◽  
Vol 127 (1) ◽  
pp. 79-93 ◽  
Author(s):  
S Goetinck ◽  
R H Waterston

Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paloma García-Casas ◽  
Pilar Alvarez-Illera ◽  
Eva Gómez-Orte ◽  
Juan Cabello ◽  
Rosalba I. Fonteriz ◽  
...  

We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.


2003 ◽  
Vol 161 (2) ◽  
pp. 229-236 ◽  
Author(s):  
Alper Romano ◽  
Annika Guse ◽  
Ivica Krascenicova ◽  
Heinke Schnabel ◽  
Ralf Schnabel ◽  
...  

The Aurora B kinase complex is a critical regulator of chromosome segregation and cytokinesis. In Caenorhabditis elegans, AIR-2 (Aurora B) function requires ICP-1 (Incenp) and BIR-1 (Survivin). In various systems, Aurora B binds to orthologues of these proteins. Through genetic analysis, we have identified a new subunit of the Aurora B kinase complex, CSC-1. C. elegans embryos depleted of CSC-1, AIR-2, ICP-1, or BIR-1 have identical phenotypes. CSC-1, BIR-1, and ICP-1 are interdependent for their localization, and all are required for AIR-2 localization. In vitro, CSC-1 binds directly to BIR-1. The CSC-1/BIR-1 complex, but not the individual subunits, associates with ICP-1. CSC-1 associates with ICP-1, BIR-1, and AIR-2 in vivo. ICP-1 dramatically stimulates AIR-2 kinase activity. This activity is not stimulated by CSC-1/BIR-1, suggesting that these two subunits function as targeting subunits for AIR-2 kinase.


1998 ◽  
Vol 143 (6) ◽  
pp. 1635-1646 ◽  
Author(s):  
Jill M. Schumacher ◽  
Andy Golden ◽  
Peter J. Donovan

An emerging family of kinases related to the Drosophila Aurora and budding yeast Ipl1 proteins has been implicated in chromosome segregation and mitotic spindle formation in a number of organisms. Unlike other Aurora/Ipl1-related kinases, the Caenorhabditis elegans orthologue, AIR-2, is associated with meiotic and mitotic chromosomes. AIR-2 is initially localized to the chromosomes of the most mature prophase I–arrested oocyte residing next to the spermatheca. This localization is dependent on the presence of sperm in the spermatheca. After fertilization, AIR-2 remains associated with chromosomes during each meiotic division. However, during both meiotic anaphases, AIR-2 is present between the separating chromosomes. AIR-2 also remains associated with both extruded polar bodies. In the embryo, AIR-2 is found on metaphase chromosomes, moves to midbody microtubules at anaphase, and then persists at the cytokinesis remnant. Disruption of AIR-2 expression by RNA- mediated interference produces entire broods of one-cell embryos that have executed multiple cell cycles in the complete absence of cytokinesis. The embryos accumulate large amounts of DNA and microtubule asters. Polar bodies are not extruded, but remain in the embryo where they continue to replicate. The cytokinesis defect appears to be late in the cell cycle because transient cleavage furrows initiate at the proper location, but regress before the division is complete. Additionally, staining with a marker of midbody microtubules revealed that at least some of the components of the midbody are not well localized in the absence of AIR-2 activity. Our results suggest that during each meiotic and mitotic division, AIR-2 may coordinate the congression of metaphase chromosomes with the subsequent events of polar body extrusion and cytokinesis.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1059-1066
Author(s):  
K A Adames ◽  
Jocelyn Gawne ◽  
Chantal Wicky ◽  
Fritz Müller ◽  
Ann M Rose

Abstract In Caenorhabditis elegans, individuals heterozygous for a reciprocal translocation produce reduced numbers of viable progeny. The proposed explanation is that the segregational pattern generates aneuploid progeny. In this article, we have examined the genotype of arrested embryonic classes. Using appropriate primers in PCR amplifications, we identified one class of arrested embryo, which could be readily recognized by its distinctive spot phenotype. The corresponding aneuploid genotype was expected to be lacking the left portion of chromosome V, from the eT1 breakpoint to the left (unc-60) end. The phenotype of the homozygotes lacking this DNA was a stage 2 embryonic arrest with a dark spot coinciding with the location in wild-type embryos of birefringent gut granules. Unlike induced events, this deletion results from meiotic segregation patterns, eliminating complexity associated with unknown material that may have been added to the end of a broken chromosome. We have used the arrested embryos, lacking chromosome V left sequences, to map a telomere probe. Unique sequences adjacent to the telomeric repeats in the clone cTel3 were missing in the arrested spot embryo. The result was confirmed by examining aneuploid segregants from a second translocation, hT1(I;V). Thus, we concluded that the telomere represented by clone cTel3 maps to the left end of chromosome V. In this analysis, we have shown that reciprocal translocations can be used to generate segregational aneuploids. These aneuploids are deleted for terminal sequences at the noncrossover ends of the C. elegans autosomes.


2007 ◽  
Vol 179 (6) ◽  
pp. 1149-1162 ◽  
Author(s):  
Kumiko Oishi ◽  
Hideyuki Okano ◽  
Hitoshi Sawa

For proper chromosome segregation, the sister kinetochores must attach to microtubules extending from the opposite spindle poles. Any errors in microtubule attachment can induce aneuploidy. In this study, we identify a novel conserved Caenorhabditis elegans microtubule-associated protein, regulator of microtubule dynamics 1 (RMD-1), that localizes to spindle microtubules and spindle poles. Depletion of RMD-1 induces severe defects in chromosome segregation, probably through merotelic attachments between microtubules and chromosomes. Although rmd-1 embryos also have a mild defect in microtubule growth, we find that mutants of the microtubule growth regulator XMAP215/ZYG-9 show much weaker segregation defects. This suggests that the microtubule growth defect in rmd-1 embryos does not cause abnormal chromosome segregation. We also see that RMD-1 interacts with aurora B in vitro. Our results suggest that RMD-1 functions in chromosome segregation in C. elegans embryos, possibly through the aurora B–mediated pathway. Human homologues of RMD-1 could also bind microtubules, which would suggest a function for these proteins in chromosome segregation during mitosis in other organisms as well.


2017 ◽  
Author(s):  
Ye Hong ◽  
Maria Velkova ◽  
Nicola Silva ◽  
Marlène Jagut ◽  
Viktor Scheidt ◽  
...  

AbstractHomologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic Holiday junction resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Blooms helicase in conjunction with the XPF-1 endonucleases, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants leading to 100% embryonic lethality. LEM-3 and MUS-81 act redundantly, their combined loss leading to a reduced number of early meiotic recombination intermediates, to a delayed disassembly of foci associated with CO designated sites, and to the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not co-localize with ZHP-3 a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations, indicating that LEM-3 drives NCO outcome. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggests that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic divisions.Author SummaryMeiotic recombination is required for genetic diversity and for the proper chromosome segregation. Recombination intermediates, such as Holliday junctions (HJs), are generated and eventually resolved to produce crossover (CO) and non-crossover (NCO). While an excess of meiotic double-strand breaks is generated, most breaks are repaired without leading to a CO outcome and usually only one break for each chromosome pair matures into a CO-designated site in Caenorhabditis elegans. Resolution of meiotic recombination intermediates and CO formation have been reported to be highly regulated by several structure-specific endonucleases and the Bloom helicase. However, little is known about enzymes involved in the NCO recombination intermediate resolution. In this study, we found that a conserved nuclease LEM-3/Ankle1 acts in parallel to the SLX-1/MUS-81 pathway to process meiotic recombination intermediates. Mutation of lem-3 has no effect on CO frequency and distribution, indicating LEM-3 functions as a nuclease promoting NCO outcome. Interestingly, a prominent localization of LEM-3 is found between dividing meiotic nuclei. We provide evidence that LEM-3 is also involved in processing remaining, erroneous recombination intermediates during meiotic divisions.


Sign in / Sign up

Export Citation Format

Share Document