scholarly journals The Mitochondrial Na+/Ca2+ Exchanger Inhibitor CGP37157 Preserves Muscle Structure and Function to Increase Lifespan and Healthspan in Caenorhabditis elegans

2021 ◽  
Vol 12 ◽  
Author(s):  
Paloma García-Casas ◽  
Pilar Alvarez-Illera ◽  
Eva Gómez-Orte ◽  
Juan Cabello ◽  
Rosalba I. Fonteriz ◽  
...  

We have reported recently that the mitochondrial Na+/Ca2+ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of sarcopenia in C. elegans body wall muscle and increasing the average and maximum speed of the worms. Similarly, CGP37157 favored the maintenance of a regular mitochondrial structure during aging. We have also investigated further the mechanism of the effect of CGP37157 by studying its effect in mutants of aak-1;aak-2/AMP-activated kinase, sir-2.1/sirtuin, rsks-1/S6 kinase and daf-16/FOXO. We found that this compound was still effective increasing lifespan in all these mutants, indicating that these pathways are not involved in the effect. We have then monitored pharynx cytosolic and mitochondrial Ca2+ signalling and our results suggest that CGP37157 is probably inhibiting not only the mitochondrial Na+/Ca2+ exchanger, but also Ca2+ entry through the plasma membrane. Finally, a transcriptomic study detected that CGP37157 induced changes in lipid metabolism enzymes and a four-fold increase in the expression of ncx-6, one of the C. elegans mitochondrial Na+/Ca2+ exchangers. In summary, CGP37157 increases both lifespan and healthspan by a mechanism involving changes in cytosolic and mitochondrial Ca2+ homeostasis. Thus, Ca2+ signalling could be a promising target to act on aging.

Author(s):  
Mengjiao Hao ◽  
Zhikang Zhang ◽  
Yijun Guo ◽  
Huihao Zhou ◽  
Qiong Gu ◽  
...  

Abstract AMP-activated protein kinase (AMPK) is involved in life span maintenance, stress responses, and germ cell cycle arrest upon dauer entry. AMPK is currently considered a promising target for preventing age-related diseases. Rubidium is one of the trace elements in human body. As early as the 1970s, RbCl has been was reported to have neuroprotective effects. In this work, we report the anti-aging effect of RbCl in Caenorhabditis elegans. Specifically, we reveal that (1) RbCl does increase the lifespan and enhance stress resistance in C. elegans without disturbing their fecundity. (2) RbCl induces superoxide dismutase (SOD) expression, which is essential for its anti-aging and anti-stress effect. (3) AAK-2 and DAF-16 are essential to the anti-aging efficacy of RbCl, and RbCl can promote DAF-16 translocating into the nucleus, suggesting that RbCl delays aging through regulating AMPK/FOXO pathway. RbCl can be a promising agent against aging related diseases.


1994 ◽  
Vol 127 (1) ◽  
pp. 79-93 ◽  
Author(s):  
S Goetinck ◽  
R H Waterston

Mutations in the unc-87 gene of Caenorhabditis elegans affect the structure and function of bodywall muscle, resulting in variable paralysis. We cloned the unc-87 gene by taking advantage of a transposon-induced allele of unc-87 and the correspondence of the genetic and physical maps in C. elegans. A genomic clone was isolated that alleviates the mutant phenotype when introduced into unc-87 mutants. Sequence analysis of a corresponding cDNA clone predicts a 357-amino acid, 40-kD protein that is similar to portions of the vertebrate smooth muscle proteins calponin and SM22 alpha, the Drosophila muscle protein mp20, the deduced product of the C. elegans cDNA cm7g3, and the rat neuronal protein np25. Analysis of the genomic sequence and of various transcripts represented in a cDNA library suggest that unc-87 mRNAs are subject to alternative splicing. Immunohistochemistry of wildtype and mutant animals with antibodies to an unc-87 fusion protein indicates that the gene product is localized to the I-band of bodywall muscle. Studies of the UNC-87 protein in other muscle mutants suggest that the unc-87 gene product associates with thin filaments, in a manner that does not depend on the presence of the thin filament protein tropomyosin.


2019 ◽  
Vol 116 (25) ◽  
pp. 12462-12467 ◽  
Author(s):  
Stuti K. Desai ◽  
Anup Padmanabhan ◽  
Sharvari Harshe ◽  
Ronen Zaidel-Bar ◽  
Linda J. Kenney

The adaptive in vivo mechanisms underlying the switch in Salmonella enterica lifestyles from the infectious form to a dormant form remain unknown. We employed Caenorhabditis elegans as a heterologous host to understand the temporal dynamics of Salmonella pathogenesis and to identify its lifestyle form in vivo. We discovered that Salmonella exists as sessile aggregates, or in vivo biofilms, in the persistently infected C. elegans gut. In the absence of in vivo biofilms, Salmonella killed the host more rapidly by actively inhibiting innate immune pathways. Regulatory cross-talk between two major Salmonella pathogenicity islands, SPI-1 and SPI-2, was responsible for biofilm-induced changes in host physiology during persistent infection. Thus, biofilm formation is a survival strategy in long-term infections, as prolonging host survival is beneficial for the parasitic lifestyle.


2013 ◽  
Vol 27 (11) ◽  
pp. 1058-1069 ◽  
Author(s):  
Mari Sakaida ◽  
Mamiko Sukeno ◽  
Yuhki Imoto ◽  
Soken Tsuchiya ◽  
Yukihiko Sugimoto ◽  
...  

Electroconvulsive therapy is an effective and rapid treatment for depression. In patients with depression, the function of the paraventricular nucleus of the hypothalamus (PVN) is frequently altered. Electroconvulsive seizure (ECS), which is a model of electroconvulsive therapy, upregulates the expression of c-fos in the PVN of animal models. Therefore, we hypothesized that ECS alters gene expression and function in the PVN. The PVN was microdissected from mouse brain sections following ECS treatment, and total RNA was analyzed by microarray. Two hours after ECS, the levels of expression of 2.6% (589 genes) of the genes showed a greater than 2-fold decrease and 0.9% (205 genes) showed a greater than 2-fold increase. Among these genes, 72 of the downregulated genes and 12 of the upregulated genes have been proposed to be associated with psychiatric disorders, such as depression, by knowledge database analyses. The groups of downregulated genes included neuropeptides ( Cck), kinases ( Prkcb, Camk2a), transcription factors ( Tcf4), and transporters ( Aqp4), and these have been suggested to be associated with psychiatric disorders and/or PVN function. The results of the present study indicated that ECS treatment could modulate PVN functions through altered gene expression, which may contribute to its antidepressant effects.


2018 ◽  
Vol 373 (1758) ◽  
pp. 20170372 ◽  
Author(s):  
Emma K. Towlson ◽  
Petra E. Vértes ◽  
Gang Yan ◽  
Yee Lian Chew ◽  
Denise S. Walker ◽  
...  

Control is essential to the functioning of any neural system. Indeed, under healthy conditions the brain must be able to continuously maintain a tight functional control between the system's inputs and outputs. One may therefore hypothesize that the brain's wiring is predetermined by the need to maintain control across multiple scales, maintaining the stability of key internal variables, and producing behaviour in response to environmental cues. Recent advances in network control have offered a powerful mathematical framework to explore the structure–function relationship in complex biological, social and technological networks, and are beginning to yield important and precise insights on neuronal systems. The network control paradigm promises a predictive, quantitative framework to unite the distinct datasets necessary to fully describe a nervous system, and provide mechanistic explanations for the observed structure and function relationships. Here, we provide a thorough review of the network control framework as applied to Caenorhabditis elegans (Yan et al. 2017 Nature 550 , 519–523. ( doi:10.1038/nature24056 )), in the style of Frequently Asked Questions. We present the theoretical, computational and experimental aspects of network control, and discuss its current capabilities and limitations, together with the next likely advances and improvements. We further present the Python code to enable exploration of control principles in a manner specific to this prototypical organism. This article is part of a discussion meeting issue ‘Connectome to behaviour: modelling C. elegans at cellular resolution’.


2001 ◽  
Vol 153 (6) ◽  
pp. 1227-1238 ◽  
Author(s):  
Mary Howe ◽  
Kent L. McDonald ◽  
Donna G. Albertson ◽  
Barbara J. Meyer

Macromolecular structures called kinetochores attach and move chromosomes within the spindle during chromosome segregation. Using electron microscopy, we identified a structure on the holocentric mitotic and meiotic chromosomes of Caenorhabditis elegans that resembles the mammalian kinetochore. This structure faces the poles on mitotic chromosomes but encircles meiotic chromosomes. Worm kinetochores require the evolutionarily conserved HIM-10 protein for their structure and function. HIM-10 localizes to the kinetochores and mediates attachment of chromosomes to the spindle. Depletion of HIM-10 disrupts kinetochore structure, causes a failure of bipolar spindle attachment, and results in chromosome nondisjunction. HIM-10 is related to the Nuf2 kinetochore proteins conserved from yeast to humans. Thus, the extended kinetochores characteristic of C. elegans holocentric chromosomes provide a guide to the structure, molecular architecture, and function of conventional kinetochores.


2020 ◽  
pp. dmm.046631
Author(s):  
Karen I. Lange ◽  
Sofia Tsiropoulou ◽  
Katarzyna Kucharska ◽  
Oliver E. Blacque

Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have employed a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S, G155S) in B9D2/mksr-2 associated with Joubert Syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment, and regulates the cilium's molecular composition and sensory/signaling functions. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and TMEM216/MKS-2. Together, these data establish C. elegans as a paradigm for interpreting JBTS mutations, and provide further insight into MKS module organisation.


Genetics ◽  
2001 ◽  
Vol 157 (2) ◽  
pp. 639-654
Author(s):  
David Rudel ◽  
Judith Kimble

Abstract The Caenorhabditis elegans (Ce) glp-1 gene encodes a Notch-like receptor. We have cloned glp-1 from C. briggsae (Cb) and C. remanei (Cr), two Caenorhabditis species that have diverged from C. elegans by roughly 20–40 million years. By sequence analysis, we find that the Cb-GLP-1 and Cr-GLP-1 proteins have retained the same motif architecture as Ce-GLP-1, including number of domains. In addition, two regions (CC-linker and regions flanking the ANK repeats) are as highly conserved as regions previously recognized as essential for signaling (e.g., ANK repeats). Phylogenetic analysis of glp-1 sequences suggests a C. briggsae/C. remanei clade with C. elegans as a sister taxon. Using RNAi to test biological functions, we find that Ce-glp-1, Cb-glp-1, and Cr-glp-1 are all required for proliferation of germline stem cells and for specifying blastomere fates in the embryo. In addition, certain biological roles of Cb-glp-1, e.g., in the vulva, have diverged from those of Ce-glp-1 and Cr-glp-1, suggesting a change in either regulation or function of the Cb-glp-1 gene during evolution. Finally, the regulation of glp-1 mRNA, previously analyzed for Ce-glp-1, is conserved in Cb-glp-1, and we identify conserved 3′ UTR sequences that may serve as regulatory elements.


1985 ◽  
Vol 5 (12) ◽  
pp. 3484-3496 ◽  
Author(s):  
D T Stinchcomb ◽  
J E Shaw ◽  
S H Carr ◽  
D Hirsh

DNA was introduced into the germ line of the nematode Caenorhabditis elegans by microinjection. Approximately 10% of the injected worms gave rise to transformed progeny. Upon injection, supercoiled molecules formed a high-molecular-weight array predominantly composed of tandem repeats of the injected sequence. Injected linear molecules formed both tandem and inverted repeats as if they had ligated to each other. No worm DNA sequences were required in the injected plasmid for the formation of these high-molecular-weight arrays. Surprisingly, these high-molecular-weight arrays were extrachromosomal and heritable. On average 50% of the progeny of a transformed hermaphrodite still carried the exogenous sequences. In situ hybridization experiments demonstrated that approximately half of the transformed animals carried foreign DNA in all of their cells; the remainder were mosaic animals in which some cells contained the exogenous sequences while others carried no detectable foreign DNA. The presence of mosaic and nonmosaic nematodes in transformed populations may permit detailed analysis of the expression and function of C. elegans genes.


2019 ◽  
Author(s):  
Chuanman Zhou ◽  
Jintao Luo ◽  
Xiaohui He ◽  
Qian Zhou ◽  
Yunxia He ◽  
...  

AbstractNALCN (Na+ leak channel, non-selective), UNC80 and UNC79 form a non-selective, voltage-independent cation channel complex that affects a broad array of neuronal activities. The molecular and neuronal mechanisms underlying the functions of the NALCN complex remain unclear. In a screen for Caenorhabditis elegans mutants with defective avoidance response to the plant hormone methyl salicylate (MeSa), we isolated novel loss-of-function (lf) mutations in unc-80 and unc-79. unc-80 and unc-79 lf mutants exhibited defective MeSa avoidance but wild type-like responses to other odorants. Lf mutants of C. elegans nca/NALCN exhibited similar MeSa-specific avoidance defect, while lf mutants of the NALCN regulatory gene nlf-1 avoided MeSa like wild type. Using fluorescent transgenic animals, we identified a subset of unc-80-expressing neurons. Neuron-specific transgene rescue and knockdown experiments suggest that a subset of interneurons, primarily including AVA, AVE and AVG, might play a necessary and sufficient role in mediating unc-80 regulation of the MeSa avoidance. We found that unc-79 was expressed in neurons largely overlapping those expressing unc-80, which is supported by the rescue of unc-80(lf) defects using an unc-80 transgene driven by an unc-79 promoter. We also suggest that C. elegans locomotion responds more sensitively to the changes of expression levels of NALCN-related genes than the MeSa avoidance does. Together, our results identified NALCN-related genes as key regulators of the MeSa avoidance behavior and provided novel genetic and neuronal insights into the function of the NALCN channel complex.Author summaryNALCN (Na+ leak channel, non-selective) is a non-selective, voltage-independent cation channel that affects multiple neuronal activities and behaviors. Mutations in NALCN and its regulator UNC80 can cause serious neurological diseases. The regulation and function of the NALCN channel complex remain to be understood. From a genetic screen, we surprisingly found that the nematode Caenorhabditis elegans requires NALCN and its two regulators UNC-80 and UNC-79 to escape from the plant stress hormone methyl salicylate (MeSa). Using methods including transgenic neuronal labeling, rescues and knockdowns, we found that unc-80-expression in a subset of head interneurons, including AVA, AVE and AVG, might be necessary and sufficient to elicit the MeSa avoidance response. We also found that unc-79 functions in overlapping neurons as unc-80 to regulate C. elegans behaviors. Our findings provide novel molecular and neuronal mechanisms for understanding the regulation and function of the NALCN channel complex.


Sign in / Sign up

Export Citation Format

Share Document