scholarly journals Listeriolysin O

2002 ◽  
Vol 156 (6) ◽  
pp. 943-946 ◽  
Author(s):  
Shaynoor Dramsi ◽  
Pascale Cossart

Cholesterol-dependent cytolysins (CDCs)**Abbreviations used in this paper: CDC, cholesterol-dependent cytolysin; LLO, listeriolysin O; PFO, perfringolysin O; SLO, streptolysin O. are produced by a large number of pathogenic gram–positive bacteria. A member of this family, listeriolysin O (LLO), is produced by the intracellular pathogen Listeria monocytogenes. A unique feature of LLO is its low optimal pH activity (∼6) which permits escape of the bacterium from the phagosome into the host cell cytosol without damaging the plasma membrane of the infected cell. In a recent study (Glomski et al., 2002, this issue), Portnoy's group has addressed the molecular mechanism underlying the pH sensitivity of LLO. Unexpectedly, a single amino acid substitution in LLO L461T results in a molecule more active at neutral pH and promoting premature permeabilization of the infected cells, leading to attenuated virulence. This finding highlights how subtle changes in proteins can be exploited by bacterial pathogens to establish and maintain the integrity of their specific niches.

1999 ◽  
Vol 112 (5) ◽  
pp. 681-693
Author(s):  
U.E. Schaible ◽  
P.H. Schlesinger ◽  
T.H. Steinberg ◽  
W.F. Mangel ◽  
T. Kobayashi ◽  
...  

The intracellular parasite Leishmania survives and proliferates in host macrophages. In this study we show that parasitophorous vacuoles of L. mexicana gain access to cytosolic material via two different routes. (1) Small anionic molecules such as Lucifer Yellow are rapidly transported into the vacuoles by an active transport mechanism that is sensitive to inhibitors of the host cell's organic anion transporter. (2) Larger molecules such as fluorescent dextrans introduced into the host cell cytosol are also delivered to parasitophorous vacuoles. This transport is slower and sensitive to modulators of autophagy. Infected macrophages were examined by two novel assays to visualize and quantify this process. Immunoelectron microscopy of cells loaded with digoxigenin-dextran revealed label in multivesicular endosomes, which appeared to fuse with parasitophorous vacuoles. The inner membranes of the multivesicular vesicles label strongly with antibodies against lysobisphosphatidic acid, suggesting that they represent a point of confluence between the endosomal and autophagosomal pathways. Although the rate of autophagous transfer was comparable in infected and uninfected cells, infected cells retained hydrolyzed cysteine proteinase substrate to a greater degree. These data suggest that L. mexicana-containing vacuoles have access to potential nutrients in the host cell cytosol via at least two independent mechanisms.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Jonathan L. Portman ◽  
Samuel B. Dubensky ◽  
Bret N. Peterson ◽  
Aaron T. Whiteley ◽  
Daniel A. Portnoy

ABSTRACTUpon entry into the host cell cytosol, the facultative intracellular pathogenListeria monocytogenescoordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivationin vitro, PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (ΔgshF) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolicL. monocytogenesinterprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expressionin vivo.IMPORTANCEIntracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions.Listeria monocytogenesis a model intracellular pathogen with robustin vitroandin vivoinfection models. Studies of the host-sensing and downstream signaling mechanisms evolved byL. monocytogenesoften describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence.


2008 ◽  
Vol 76 (8) ◽  
pp. 3690-3699 ◽  
Author(s):  
Nrusingh P. Mohapatra ◽  
Shilpa Soni ◽  
Thomas J. Reilly ◽  
Jirong Liu ◽  
Karl E. Klose ◽  
...  

ABSTRACT Francisella tularensis is a facultative intracellular pathogen and the etiologic agent of tularemia. It is capable of escape from macrophage phagosomes and replicates in the host cell cytosol. Bacterial acid phosphatases are thought to play a major role in the virulence and intracellular survival of a number of intracellular pathogens. The goal of this study was to delete the four primary acid phosphatases (Acps) from Francisella novicida and examine the interactions of mutant strains with macrophages, as well as the virulence of these strains in mice. We constructed F. novicida mutants with various combinations of acp deletions and showed that loss of the four Acps (AcpA, AcpB, AcpC, and histidine acid phosphatase [Hap]) in an F. novicida strain (ΔABCH) resulted in a 90% reduction in acid phosphatase activity. The ΔABCH mutant was defective for survival/growth within human and murine macrophage cell lines and was unable to escape from phagosome vacuoles. With accumulation of Acp deletions, a progressive loss of virulence in the mouse model was observed. The ΔABCH strain was dramatically attenuated and was an effective single-dose vaccine against homologous challenge. Furthermore, both acpA and hap were induced when the bacteria were within host macrophages. Thus, the Francisella acid phosphatases cumulatively play an important role in intracellular trafficking and virulence.


2011 ◽  
Vol 79 (6) ◽  
pp. 2193-2203 ◽  
Author(s):  
Manli Qi ◽  
Siqi Gong ◽  
Lei Lei ◽  
Quanzhong Liu ◽  
Guangming Zhong

ABSTRACTTheChlamydia trachomatisouter membrane complex protein B (OmcB) is an antigen with diagnostic and vaccine relevance. To further characterize OmcB, we generated antibodies against OmcB C-terminal (OmcBc) and N-terminal (OmcBn) fragments. Surprisingly, the anti-OmcBc antibody detected dominant signals in the host cell cytosol, while the anti-OmcBn antibody exclusively labeled intrainclusion signals inC. trachomatis-infected cells permeabilized with saponin. Western blot analyses revealed that OmcB was partially processed into OmcBc and OmcBn fragments. The processed OmcBc was released into host cell cytosol, while the OmcBn and remaining full-length OmcB were retained within the chlamydial inclusions. The organism-associated OmcB epitopes became detectable only after theC. trachomatis-infected cells were permeabilized with strong detergents such as SDS. However, the harsh permeabilization conditions also led to the leakage of the already secreted OmcBc and chlamydia-secreted protease (CPAF) out of the host cells. The OmcBc processing and release occurred in all biovars ofC. trachomatis. Moreover, the released OmcBc but not the retained OmcBn was highly immunogenic inC. trachomatis-infected women, which is consistent with the concept that exposure of chlamydial proteins to host cell cytosol is accompanied by increased immunogenicity. These observations have provided important information for further exploring/optimizing OmcB as a target for the development of diagnosis methods and vaccines.


2003 ◽  
Vol 71 (12) ◽  
pp. 6754-6765 ◽  
Author(s):  
Ian J. Glomski ◽  
Amy L. Decatur ◽  
Daniel A. Portnoy

ABSTRACT Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. Escape of the bacterium from the phagosome to the cytosol is mediated by the bacterial pore-forming protein listeriolysin O (LLO). LLO has multiple mechanisms that optimize activity in the phagosome and minimize activity in the host cytosol. Mutants that fail to compartmentalize LLO activity are cytotoxic and have reduced virulence. We sought to determine why cytotoxic bacteria have attenuated virulence in the mouse model of listeriosis. In this study, we constructed a series of strains with mutations in LLO and with various degrees of cytotoxicity. We found that the more cytotoxic the strain in cell culture, the less virulent it was in mice. Induction of neutropenia increased the relative virulence of the cytotoxic strains 100-fold in the spleen and 10-fold in the liver. The virulence defect was partially restored in neutropenic mice by adding gentamicin, an antibiotic that kills extracellular bacteria. Additionally, L. monocytogenes grew more slowly in extracellular fluid (mouse serum) than within tissue culture cells. We concluded that L. monocytogenes controls the cytolytic activity of LLO to maintain its nutritionally rich intracellular niche and avoid extracellular defenses of the host.


2008 ◽  
Vol 76 (8) ◽  
pp. 3415-3428 ◽  
Author(s):  
Zhongyu Li ◽  
Ding Chen ◽  
Youmin Zhong ◽  
Shiping Wang ◽  
Guangming Zhong

ABSTRACT The chlamydial cryptic plasmid encodes eight putative open reading frames (ORFs), designated pORF1 to -8. Antibodies raised against these ORF proteins were used to localize the endogenous proteins during chlamydial infection. We found that the pORF5 protein (also known as pgp3) was detected mainly in the cytosol of Chlamydia-infected cells, while the remaining seven proteins were found inside the chlamydial inclusions only. The pgp3 distribution pattern in the host cell cytosol is similar to but not overlapping with that of chlamydial protease/proteasome-like activity factor (CPAF), a chlamydial genome-encoded protein known to be secreted from chlamydial inclusions into the host cell cytosol. The anti-pgp3 labeling was removed by preabsorption with pgp3 but not CPAF fusion proteins and vice versa, demonstrating that pgp3 is a unique secretion protein. This conclusion is further supported by the observation that pgp3 was highly enriched in cytosolic fractions and had a minimal presence in the inclusion-containing nuclear fractions prepared from Chlamydia-infected cells. The pgp3 protein was detected as early as 12 h after infection and was secreted by all chlamydial species that carry the cryptic plasmid, suggesting that there is a selection pressure for maintaining pgp3 secretion during chlamydial infection. Although expression of pgp3 in the host cell cytosol via a transgene did not alter the susceptibility of the transfected cells to the subsequent chlamydial infection, purified pgp3 protein stimulated macrophages to release inflammatory cytokines, suggesting that pgp3 may contribute to chlamydial pathogenesis.


Toxins ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 38 ◽  
Author(s):  
Brittney N. Nguyen ◽  
Daniel A. Portnoy

Listeriolysin O (LLO) is a pore-forming cytolysin that allows Listeria monocytogenes to escape from phagocytic vacuoles and enter the host cell cytosol. LLO is expressed continuously during infection, but it has been a challenge to evaluate the importance of LLO secreted in the host cell cytosol because deletion of the gene encoding LLO (hly) prevents localization of L. monocytogenes to the cytosol. Here, we describe a L. monocytogenes strain (hlyfl) in which hly is flanked by loxP sites and Cre recombinase is under the transcriptional control of the L. monocytogenes actA promoter, which is highly induced in the host cell cytosol. In less than 2 h after infection of bone marrow-derived macrophages (BMMs), bacteria were 100% non-hemolytic. hlyfl grew intracellularly to levels 10-fold greater than wildtype L. monocytogenes and was less cytotoxic. In an intravenous mouse model, 90% of bacteria were non-hemolytic within three hours in the spleen and eight hours in the liver. The loss of LLO led to a 2-log virulence defect in the spleen and a 4-log virulence defect in the liver compared to WT L. monocytogenes. Thus, the production of LLO in the cytosol has significant impact on the pathogenicity of L. monocytogenes.


2020 ◽  
Author(s):  
Rafael Espiritu

<p>Cholesterol-dependent cytolysins (CDCs) are proteinaceous toxins secreted as monomers by some Gram-positive and Gram-negative bacteria that contribute to their pathogenicity. These toxins bind to either cholesterol or human CD59, leading to massive structural changes, toxin oligomerization, formation of very large pores, and ultimately cell death, making these proteins promising targets for inhibition. Myricetin, and its related flavonoids, have been previously identified as a candidate small molecule inhibitor of specific CDCs such as listeriolysin O (LLO) and suilysin (SLY), interfering with their oligomerization. In this work, molecular docking was performed to assess the interaction of myricetin with other CDCs whose crystal structures are already known. Results indicated that although myricetin bound to the hitherto identified cavity in domain 4 (D4), much more efficient and stable binding was obtained in sites along the interfacial regions of domains 1 – 3 (D1 – D3). This was common among the tested CDCs, which was primarily due to much more extensive stabilizing intermolecular interactions, as indicated by post-docking analysis. Specifically, myricetin bound to (1) the interface of the three domains in anthrolysin O (ALO), perfringolysin O (PFO), pneumolysin (PLY), SLY, and vaginolysin (VLY), (2) at/near the D1/D3 interface in LLO and streptolysin O (SLO), and (3) along the D2/D3 interface in intermedilysin (ILY). These findings provide theoretical basis on the possibility of using myricetin and its related compounds as a broad-spectrum inhibitor of CDCs to potentially address the diseases associated with these pathogens.</p>


Sign in / Sign up

Export Citation Format

Share Document