scholarly journals Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects

2003 ◽  
Vol 160 (2) ◽  
pp. 235-243 ◽  
Author(s):  
Kiwamu Takemoto ◽  
Takeharu Nagai ◽  
Atsushi Miyawaki ◽  
Masayuki Miura

Indicator molecules for caspase-3 activation have been reported that use fluorescence resonance energy transfer (FRET) between an enhanced cyan fluorescent protein (the donor) and enhanced yellow fluorescent protein (EYFP; the acceptor). Because EYFP is highly sensitive to proton (H+) and chloride ion (Cl−) levels, which can change during apoptosis, this indicator's ability to trace the precise dynamics of caspase activation is limited, especially in vivo. Here, we generated an H+- and Cl−-insensitive indicator for caspase activation, SCAT, in which EYFP was replaced with Venus, and monitored the spatio-temporal activation of caspases in living cells. Caspase-3 activation was initiated first in the cytosol and then in the nucleus, and rapidly reached maximum activation in 10 min or less. Furthermore, the nuclear activation of caspase-3 preceded the nuclear apoptotic morphological changes. In contrast, the completion of caspase-9 activation took much longer and its activation was attenuated in the nucleus. However, the time between the initiation of caspase-9 activation and the morphological changes was quite similar to that seen for caspase-3, indicating the activation of both caspases occurred essentially simultaneously during the initiation of apoptosis.

2004 ◽  
Vol 382 (2) ◽  
pp. 695-702 ◽  
Author(s):  
Yu HO ◽  
Huei-Ru LO ◽  
Tzu-Ching LEE ◽  
Carol P. Y. WU ◽  
Yu-Chan CHAO

The BEVS (baculovirus expression vector system) is widely used for the production of proteins. However, engineered proteins frequently experience the problem of degradation, possibly due to the lytic nature of the conventional BEVS (herein referred to as L-BEVS). In the present study, a non-lytic BEVS (N-BEVS) was established by random mutagenesis of viral genomes. At 5 days post-infection, N-BEVS showed only 7% cell lysis, whereas L-BEVS showed 60% lysis of cells. The quality of protein expressed in both N- and L-BEVSs was examined further using a novel FRET (fluorescence resonance energy transfer)-based assay. To achieve this, we constructed a concatenated fusion protein comprising LUC (luciferase) sandwiched between EYFP (enhanced yellow fluorescent protein) and ECFP (enhanced cyan fluorescent protein). The distance separating the two fluorescent proteins in the fusion protein EYFP–LUC–ECFP (designated hereafter as the YLC construct) governs energy transfer between EYFP and ECFP. FRET efficiency thus reflects the compactness of LUC, indicating its folding status. We found more efficient FRET in N-BEVS compared with that obtained in L-BEVS, suggesting that more tightly folded LUC was produced in N-BEVS. YLC expression was also analysed by Western blotting, revealing significantly less protein degradation in N-BEVS than in L-BEVS, in which extensive degradation was observed. This FRET-based in vivo folding technology showed that YLC produced in N-BEVS is more compact, correlating with improved resistance to degradation. N-BEVS is thus a convenient alternative for L-BEVS for the production of proteins vulnerable to degradation using baculoviruses.


Open Biology ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200010
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Emir Bora Akmeriç ◽  
Barbara Di Ventura

The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo , in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.


2014 ◽  
Author(s):  
Cheng Hsun Ho ◽  
Wolf B. Frommer

To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4 and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research.


Reproduction ◽  
2014 ◽  
Vol 147 (6) ◽  
pp. 781-788 ◽  
Author(s):  
Franziska Schmerse ◽  
Katja Woidacki ◽  
Monika Riek-Burchardt ◽  
Peter Reichardt ◽  
Axel Roers ◽  
...  

Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for the study ofin vivobehavior of these cells. We have recently reported that uterine mast cells (uMCs) are important for implantation and placentation. However, theirin vivolocalization in uterus before and during pregnancy is unknown. Herein, we report the direct observation of uMCsin vivousing double-transgenic C57BL/6JMcpt5-Cre ROSA26-EYFPmice with high expression of enhanced yellow fluorescent protein in MC protease 5 (Cma1(Mcpt5))-expressing cells by intravital two-photon microscopy. We were able to monitor MCs livein uteroduring the murine estrous cycle and at different days of pregnancy. We demonstrated that uMCs accumulated during the receptive phase of the female (estrus) and persisted in large numbers at early pregnancy stages and around mid-gestation and declined in number in non-pregnant animals at diestrus. This intravital microscopy technique, including a custom-made microscope stage and the adaption of the surgical procedure, allowed the access of the uterus and implantations for imaging. The introduced application of intravital microscopy to C57BL/6J-Mcpt5-Cre ROSA26-EYFPmice offers a novel and powerfulin vivoapproach to further address the evident relevance of uMCs to reproductive processes with obvious clinical implications.


2004 ◽  
Vol 10 (4) ◽  
pp. 442-448 ◽  
Author(s):  
Yingpei Zhang ◽  
Catherine Haskins ◽  
Marisa Lopez-Cruzan ◽  
Jianhua Zhang ◽  
Victoria E. Centonze ◽  
...  

Apoptosis plays an important role in many physiological and pathological processes. The initiation and execution of the cell death program requires activation of multiple caspases in a stringently temporal order. Here we describe a method that allows real-time observation of caspase activation in situ in live cells based on fluorescent resonance energy transfer (FRET) measurement using the prism and reflector imaging spectroscopy system (PARISS). When a fusion protein consisting of CFP connected to YFP via an intervening caspase substrate that has been targeted to a specific subcellular location is excited with a light source whose wavelength matches the cyan fluorescent protein (CFP) excitation peak, the energy absorbed by the CFP fluorophore is not emitted as fluorescence. Instead, the excitation energy is absorbed by the nearby yellow fluorescent protein (YFP) fluorophore that is covalently linked to CFP through a short peptide containing the caspase substrate. Cleavage of the linker peptide by caspases results in loss of FRET due to the separation of CFP and YFP fluorophores. Using a mitochondrially targeted CFP–caspase 3 substrate–YFP construct (mC3Y), we demonstrate for the first time that there is caspase-3-like activity in the mitochondrial matrix of some cells at very late stage of apoptosis.


2002 ◽  
Vol 157 (4) ◽  
pp. 615-629 ◽  
Author(s):  
Anthony K.L. Leung ◽  
Angus I. Lamond

The NHPX protein is a nucleolar factor that binds directly to a conserved RNA target sequence found in nucleolar box C/D snoRNAs and in U4 snRNA. Using enhanced yellow fluorescent protein (EYFP)– and enhanced cyan fluorescent protein–NHPX fusions, we show here that NHPX is specifically accumulated in both nucleoli and Cajal bodies (CBs) in vivo. The fusion proteins display identical localization patterns and RNA binding specificities to the endogenous NHPX. Analysis of a HeLa cell line stably expressing EYFP–NHPX showed that the nucleolar accumulation of NHPX was preceded by its transient accumulation in splicing speckles. Only newly expressed NHPX accumulated in speckles, and the nucleolar pool of NHPX did not interchange with the pool in speckles, consistent with a unidirectional pathway. The transient accumulation of NHPX in speckles prior to nucleoli was observed in multiple cell lines, including primary cells that lack CBs. Inhibitor studies indicated that progression of newly expressed NHPX from speckles to nucleoli was dependent on RNA polymerase II transcription, but not on RNA polymerase I activity. The data show a specific temporal pathway involving the sequential and directed accumulation of NHPX in distinct subnuclear compartments, and define a novel mechanism for nucleolar localization.


2003 ◽  
Vol 285 (1) ◽  
pp. F33-F39 ◽  
Author(s):  
Peter K. Stricklett ◽  
Deborah Taylor ◽  
Raoul D. Nelson ◽  
Donald E. Kohan

Evaluation of thick ascending limb (TAL) function has been hindered by the limited ability to selectively examine the function of this nephron segment in vivo. To address this, a Cre/loxP strategy was employed whereby the Tamm-Horsfall (THP) promoter was used to drive Cre recombinase expression in transgenic mice. The THP gene was cloned from a mouse genomic library, and 3.7 kb of the mouse THP 5′-flanking region containing the first noncoding exon of the THP gene were inserted upstream of an epitope-tagged Cre recombinase (THP-CreTag). THP-CreTag transgenic mice were bred with ROSA26-enhanced yellow fluorescent protein (eYFP) mice (contain a loxP-flanked “STOP” sequence 5′ to eYFP), and doubly heterozygous offspring were analyzed. THP and eYFP were expressed in an identical pattern with predominant localization to the renal outer medulla without expression in nonrenal tissues. eYFP did not colocalize with thiazide-sensitive cotransporter (distal tubule) or neuronal nitric oxide synthase (macula densa) expression. THP mRNA expression was detected only in kidney, whereas CreTag mRNA was also present in testes. These data indicate that THP-CreTag transgenic mice can be used for TAL-specific gene recombination in the kidney.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Cheng-Hsun Ho ◽  
Wolf B Frommer

To monitor nitrate and peptide transport activity in vivo, we converted the dual-affinity nitrate transceptor CHL1/NRT1.1/NPF6.3 and four related oligopeptide transporters PTR1, 2, 4, and 5 into fluorescence activity sensors (NiTrac1, PepTrac). Substrate addition to yeast expressing transporter fusions with yellow fluorescent protein and mCerulean triggered substrate-dependent donor quenching or resonance energy transfer. Fluorescence changes were nitrate/peptide-specific, respectively. Like CHL1, NiTrac1 had biphasic kinetics. Mutation of T101A eliminated high-affinity transport and blocked the fluorescence response to low nitrate. NiTrac was used for characterizing side chains considered important for substrate interaction, proton coupling, and regulation. We observed a striking correlation between transport activity and sensor output. Coexpression of NiTrac with known calcineurin-like proteins (CBL1, 9; CIPK23) and candidates identified in an interactome screen (CBL1, KT2, WNKinase 8) blocked NiTrac1 responses, demonstrating the suitability for in vivo analysis of activity and regulation. The new technology is applicable in plant and medical research.


2004 ◽  
Vol 15 (3) ◽  
pp. 990-1002 ◽  
Author(s):  
Nicola Susann Werner ◽  
Reinhard Windoffer ◽  
Pavel Strnad ◽  
Christine Grund ◽  
Rudolf Eberhard Leube ◽  
...  

Dominant keratin mutations cause epidermolysis bullosa simplex by transforming keratin (K) filaments into aggregates. As a first step toward understanding the properties of mutant keratins in vivo, we stably transfected epithelial cells with an enhanced yellow fluorescent protein-tagged K14R125C mutant. K14R125C became localized as aggregates in the cell periphery and incorporated into perinuclear keratin filaments. Unexpectedly, keratin aggregates were in dynamic equilibrium with soluble subunits at a half-life time of <15 min, whereas filaments were extremely static. Therefore, this dominant-negative mutation acts by altering cytoskeletal dynamics and solubility. Unlike previously postulated, the dominance of mutations is limited and strictly depends on the ratio of mutant to wild-type protein. In support, K14R125C-specific RNA interference experiments resulted in a rapid disintegration of aggregates and restored normal filaments. Most importantly, live cell inhibitor studies revealed that the granules are transported from the cell periphery inwards in an actin-, but not microtubule-based manner. The peripheral granule zone may define a region in which keratin precursors are incorporated into existing filaments. Collectively, our data have uncovered the transient nature of keratin aggregates in cells and offer a rationale for the treatment of epidermolysis bullosa simplex by using short interfering RNAs.


Sign in / Sign up

Export Citation Format

Share Document