enhanced yellow fluorescent protein
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 11)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Peipei Cheng ◽  
Zhihao Zhang ◽  
Fayu Yang ◽  
Shuo Cai ◽  
Lina Wang ◽  
...  

Eimeria species are intracellular parasites residing inside the intestinal epithelial cell, which cause poultry coccidiosis and result in significant financial losses in the poultry industry. Genome editing of Eimeria is of immense importance for the development of vaccines and drugs. CRISPR/Cas9 has been utilized for manipulating the genome of Eimeria tenella (E. tenella). Ectopic expression of Cas9, i.e., via plasmids, would introduce transgene, which substantially limits its application, especially for vaccine development. In this study, we initially optimized the condition of the transfection protocol. We demonstrated that with the optimized condition, the transfection of FnCas12a (also known as “FnCpf1”) protein and crRNA targeting EtHistone H4 triggered DNA double-strand breaks in vivo. We then used this strategy to knock-in a coding cassette for an enhanced yellow fluorescent protein (EYFP) and dihydrofolate reductase–thymidylate synthase gene (DHFR) as a selection marker to tag endogenous EtActin. The engineered E. tenella parasite possesses EYFP expression in its entire life cycle. Our results demonstrated that FnCas12a could trigger genome editing in E. tenella, which augments the applicability of the dissection of gene function and the development of anticoccidial drugs and vaccines for Eimeria species.


2021 ◽  
Author(s):  
Shuo Duan ◽  
Yunfei Long ◽  
Shuyuan Cheng ◽  
Jinyun Li ◽  
Zhigang Ouyang ◽  
...  

Xanthomonas citri subsp. citri (Xcc) is the causal agent of citrus bacterial canker (CBC), one of the most devastating citrus diseases. Most commercial citrus varieties are susceptible to CBC. However, some citrus varieties and wild citrus germplasms are CBC-resistant and are promising in genetic improvements of citrus resistance against CBC. We aimed to evaluate citrus germplasms for resistance against CBC. First, we developed a rapid evaluation method based on enhanced yellow fluorescent protein (eYFP)-labeled Xcc. The results demonstrated that eYFP does not affect the growth and virulence of Xcc. Xcc-eYFP allows measuring of bacterial titers, but is more efficient and rapid than the plate colony counting method. Next, we evaluated citrus germplasms collected in China. Based on symptoms and bacterial titers, we identified that two citrus germplasms (‘Ichang’ papeda, and ‘Huapi’ kumquat) are resistant, whereas eight citrus germplasms (‘Chongyi’ wild mandarin, ‘Mangshan’ wild mandarin, ‘Ledong’ kumquat, ‘Dali’ citron, ‘Yiliang’ citron, ‘Longyan’ kumquat, ‘Bawang’ kumquat and ‘Daoxian’ wild mandarin) are tolerant. In summary, we have developed a rapid evaluation method to test the resistance of citrus plants against CBC. This method was successfully used to identify two highly canker-resistant citrus germplasms and eight citrus germplasms with canker tolerance. These results could be leveraged in traditional breeding contexts or be used to identify canker resistance genes to improve the disease resistance of commercial citrus varieties via biotechnological approaches.


2020 ◽  
Vol 319 (6) ◽  
pp. C997-C1010
Author(s):  
A. C. Mendelsohn ◽  
L. M. Sanmarco ◽  
R. G. Spallanzani ◽  
D. Brown ◽  
F. J. Quintana ◽  
...  

Successful sperm maturation and storage rely on a unique immunological balance that protects the male reproductive organs from invading pathogens and spermatozoa from a destructive autoimmune response. We previously characterized one subset of mononuclear phagocytes (MPs) in the murine epididymis, CX3CR1+ cells, emphasizing their different functional properties. This population partially overlaps with another subset of understudied heterogeneous MPs, the CD11c+ cells. In the present study, we analyzed the CD11c+ MPs for their immune phenotype, morphology, and antigen capturing and presenting abilities. Epididymides from CD11c-EYFP mice, which express enhanced yellow fluorescent protein (EYFP) in CD11c+ MPs, were divided into initial segment (IS), caput/corpus, and cauda regions. Flow cytometry analysis showed that CD11c+ MPs with a macrophage phenotype (CD64+ and F4/80+) were the most abundant in the IS, whereas those with a dendritic cell signature [CD64− major histocompatibility complex class II (MHCII)+] were more frequent in the cauda. Immunofluorescence revealed morphological and phenotypic differences between CD11c+ MPs in the regions examined. To assess the ability of CD11c+ cells to take up antigens, CD11c-EYFP mice were injected intravenously with ovalbumin. In the IS, MPs expressing macrophage markers were most active in taking up the antigens. A functional antigen-presenting coculture study was performed, whereby CD4+ T cells were activated after ovalbumin presentation by CD11c+ epididymal MPs. The results demonstrated that CD11c+ MPs in all regions were capable of capturing and presenting antigens. Together, this study defines a marked regional variation in epididymal antigen-presenting cells that could help us understand fertility and contraception but also has larger implications in inflammation and disease pathology.


2020 ◽  
Vol 45 (8) ◽  
pp. 687-698
Author(s):  
Jane J Bartonjo ◽  
Robert F Lundy

Abstract Rostral forebrain structures, such as the central nucleus of the amygdala (CeA), send projections to the nucleus of the solitary tract (NST) and the parabrachial nucleus (PBN) that modulate taste-elicited responses. However, the proportion of forebrain-induced excitatory and inhibitory effects often differs when taste cell recording changes from the NST to the PBN. The present study investigated whether this descending influence might originate from a shared or distinct population of neurons marked by expression of somatostatin (Sst). In Sst-reporter mice, the retrograde tracers’ cholera toxin subunit B AlexaFluor-488 and -647 conjugates were injected into the taste-responsive regions of the NST and the ipsilateral PBN. In Sst-cre mice, the cre-dependent retrograde tracers’ enhanced yellow fluorescent protein Herpes Simplex Virus (HSV) and mCherry fluorescent protein HSV were injected into the NST and the ipsilateral PBN. The results showed that ~40% of CeA-to-PBN neurons expressed Sst compared with ~ 23% of CeA-to-NST neurons. For both the CeA Sst-positive and -negative populations, the vast majority projected to the NST or PBN but not both nuclei. Thus, a subset of CeA-to-NST and CeA-to-PBN neurons are marked by Sst expression and are largely distinct from one another. Separate populations of CeA/Sst neurons projecting to the NST and PBN suggest that differential modulation of taste processing might, in part, rely on differences in local brainstem/forebrain synaptic connections.


Open Biology ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 200010
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Emir Bora Akmeriç ◽  
Barbara Di Ventura

The Escherichia coli Min system plays an important role in the proper placement of the septum ring at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator with the membrane-bound ATPase MinD, resulting in MinD concentration being the lowest at mid-cell. MinC, the direct inhibitor of the septum initiator protein FtsZ, forms a complex with MinD at the membrane, mirroring its polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. Min oscillations are often studied in living cells by time-lapse microscopy using fluorescently labelled Min proteins. Here, we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo , in vitro and in silico approaches, we demonstrate that eYFP compromises the ability of MinE to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. In silico analyses predict that other fluorescent proteins are also likely to compromise several functionalities of MinE, suggesting that the results presented here are not specific to eYFP.


2020 ◽  
Vol 401 (2) ◽  
pp. 309-317 ◽  
Author(s):  
Meili Li ◽  
Zuo Xu ◽  
Xingmei Zou ◽  
Yuanfang Wang ◽  
Yiwen Li ◽  
...  

AbstractPseudorabies virus (PRV) UL2 (pUL2) is a multifunctional protein, which is homologous with herpes simplex virus 1 early protein UL2 (hUL2) and crucial for the viral propagation. Yet, how pUL2 executes its roles in the viral life cycle remain inadequately understood. In order to uncover its effect on the procedure of PRV infection, investigation was performed to examine the subcellular distribution of pUL2 and establish its trafficking mechanism. In the present study, enhanced yellow fluorescent protein or Myc tag fused pUL2 was transiently overexpressed in transfected cells and exhibited an absolutely nuclear accumulation without the existence of other PRV proteins. Additionally, the nuclear trafficking of pUL2 was proved to rely on Ran-, transportin-1, importin β1, importin α1, α3 and α5. Accordingly, these data will benefit the knowledge of pUL2-mediated biological effects in PRV infection cycle.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Celina Frank ◽  
Dieter Jendrossek

ABSTRACT Acidocalcisomes are membrane-enclosed, polyphosphate-containing acidic organelles in lower Eukaryota but have also been described for Agrobacterium tumefaciens (M. Seufferheld, M. Vieira, A. Ruiz, C. O. Rodrigues, S. Moreno, and R. Docampo, J Biol Chem 278:29971–29978, 2003, https://doi.org/10.1074/jbc.M304548200). This study aimed at the characterization of polyphosphate-containing acidocalcisomes in this alphaproteobacterium. Unexpectedly, fluorescence microscopic investigation of A. tumefaciens cells using fluorescent dyes and localization of constructed fusions of polyphosphate kinases (PPKs) and of vacuolar H+-translocating pyrophosphatase (HppA) with enhanced yellow fluorescent protein (eYFP) suggested that acidocalcisomes and polyphosphate are different subcellular structures. Acidocalcisomes and polyphosphate granules were frequently located close together, near the cell poles. However, they never shared the same position. Mutant strains of A. tumefaciens with deletions of both ppk genes (Δppk1 Δppk2) were unable to form polyphosphate but still showed cell pole-located eYFP-HppA foci and could be stained with MitoTracker. In conclusion, A. tumefaciens forms polyP granules that are free of a surrounding membrane and thus resemble polyP granules of Ralstonia eutropha and other bacteria. The composition, contents, and function of the subcellular structures that are stainable with MitoTracker and harbor eYFP-HppA remain unclear. IMPORTANCE The uptake of alphaproteobacterium-like cells by ancestors of eukaryotic cells and subsequent conversion of these alphaproteobacterium-like cells to mitochondria are thought to be key steps in the evolution of the first eukaryotic cells. The identification of acidocalcisomes in two alphaproteobacterial species some years ago and the presence of homologs of the vacuolar proton-translocating pyrophosphatase HppA, a marker protein of the acidocalcisome membrane in eukaryotes, in virtually all species within the alphaproteobacteria suggest that eukaryotic acidocalcisomes might also originate from related structures in ancestors of alphaproteobacterial species. Accordingly, alphaproteobacterial acidocalcisomes and eukaryotic acidocalcisomes should have similar features. Since hardly any information is available on bacterial acidocalcisomes, this study aimed at the characterization of organelle-like structures in alphaproteobacterial cells, with A. tumefaciens as an example.


2020 ◽  
Author(s):  
Navaneethan Palanisamy ◽  
Mehmet Ali Öztürk ◽  
Barbara Di Ventura

AbstractThe Escherichia coli Min system plays an important role in the proper placement of the septum ring (Z-ring) at mid-cell during cell division. MinE forms a pole-to-pole spatial oscillator together with the membrane-bound ATPase MinD, which results in MinD having a concentration gradient with maxima at the poles and minimum at mid-cell. MinC, the direct inhibitor of the Z-ring initiator protein FtsZ, forms a complex with MinD at the membrane, thus mirroring MinD polar gradients. Therefore, MinC-mediated FtsZ inhibition occurs away from mid-cell. The existence of the oscillations was revealed by performing time-lapse microscopy with fluorescently-labeled Min proteins. These fusion proteins have been since then widely used to study properties of the Min system. Here we show that, despite permitting oscillations to occur in a range of protein concentrations, the enhanced yellow fluorescent protein (eYFP) C-terminally fused to MinE impairs its function. Combining in vivo, in vitro and in silico approaches, we demonstrate that the eYFP compromises MinE ability to displace MinC from MinD, to stimulate MinD ATPase activity and to directly bind to the membrane. Moreover, we reveal that MinE-eYFP is prone to aggregation. Taken together, our results indicate that this fusion is functionally impaired and should be used with caution in cell biological studies.


2019 ◽  
Vol 20 (20) ◽  
pp. 5229 ◽  
Author(s):  
Tirthendu Sen ◽  
Anastasia Mamontova ◽  
Anastasia Titelmayer ◽  
Aleksander Shakhov ◽  
Artyom Astafiev ◽  
...  

Enhanced green fluorescent protein (EGFP)—one of the most widely applied genetically encoded fluorescent probes—carries the threonine-tyrosine-glycine (TYG) chromophore. EGFP efficiently undergoes green-to-red oxidative photoconversion (“redding”) with electron acceptors. Enhanced yellow fluorescent protein (EYFP), a close EGFP homologue (five amino acid substitutions), has a glycine-tyrosine-glycine (GYG) chromophore and is much less susceptible to redding, requiring halide ions in addition to the oxidants. In this contribution we aim to clarify the role of the first chromophore-forming amino acid in photoinduced behavior of these fluorescent proteins. To that end, we compared photobleaching and redding kinetics of EGFP, EYFP, and their mutants with reciprocally substituted chromophore residues, EGFP-T65G and EYFP-G65T. Measurements showed that T65G mutation significantly increases EGFP photostability and inhibits its excited-state oxidation efficiency. Remarkably, while EYFP-G65T demonstrated highly increased spectral sensitivity to chloride, it is also able to undergo redding chloride-independently. Atomistic calculations reveal that the GYG chromophore has an increased flexibility, which facilitates radiationless relaxation leading to the reduced fluorescence quantum yield in the T65G mutant. The GYG chromophore also has larger oscillator strength as compared to TYG, which leads to a shorter radiative lifetime (i.e., a faster rate of fluorescence). The faster fluorescence rate partially compensates for the loss of quantum efficiency due to radiationless relaxation. The shorter excited-state lifetime of the GYG chromophore is responsible for its increased photostability and resistance to redding. In EYFP and EYFP-G65T, the chromophore is stabilized by π-stacking with Tyr203, which suppresses its twisting motions relative to EGFP.


Sign in / Sign up

Export Citation Format

Share Document