scholarly journals Cyclic AMP and calcium interplay as second messengers in melatonin-dependent regulation of Plasmodium falciparum cell cycle

2005 ◽  
Vol 170 (4) ◽  
pp. 551-557 ◽  
Author(s):  
Flávio H. Beraldo ◽  
Fabiana M. Almeida ◽  
Aline M. da Silva ◽  
Célia R.S. Garcia

The host hormone melatonin increases cytoplasmic Ca2+ concentration and synchronizes Plasmodium cell cycle (Hotta, C.T., M.L. Gazarini, F.H. Beraldo, F.P. Varotti, C. Lopes, R.P. Markus, T. Pozzan, and C.R. Garcia. 2000. Nat. Cell Biol. 2:466–468). Here we show that in Plasmodium falciparum melatonin induces an increase in cyclic AMP (cAMP) levels and cAMP-dependent protein kinase (PKA) activity (40 and 50%, respectively). When red blood cells infected with P. falciparum are treated with cAMP analogue adenosine 3′,5′-cyclic monophosphate N6-benzoyl/PKA activator (6-Bz-cAMP) there is an alteration of the parasite cell cycle. This effect appears to depend on activation of PKA (abolished by the PKA inhibitors adenosine 3′,5′-cyclic monophosphorothioate/8 Bromo Rp isomer, PKI [cell permeable peptide], and H89). An unexpected cross talk was found to exist between the cAMP and the Ca2+-dependent signaling pathways. The increases in cAMP by melatonin are inhibited by blocker of phospholipase C U73122, and addition of 6-Bz-cAMP increases cytosolic Ca2+ concentration, through PKA activation. These findings suggest that in Plasmodium a highly complex interplay exists between the Ca2+ and cAMP signaling pathways, but also that the control of the parasite cell cycle by melatonin requires the activation of both second messenger controlled pathways.

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 519
Author(s):  
Kasidid Ruksakiet ◽  
Balázs Stercz ◽  
Gergő Tóth ◽  
Pongsiri Jaikumpun ◽  
Ilona Gróf ◽  
...  

The formation of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) is one of the most common causes of morbidity and mortality in CF patients. Cyclic di-GMP and cyclic AMP are second messengers regulating the bacterial lifestyle transition in response to environmental signals. We aimed to investigate the effects of extracellular pH and bicarbonate on intracellular c-di-GMP and cAMP levels, and on biofilm formation. P. aeruginosa was inoculated in a brain–heart infusion medium supplemented with 25 and 50 mM NaCl in ambient air (pH adjusted to 7.4 and 7.7 respectively), or with 25 and 50 mM NaHCO3 in 5% CO2 (pH 7.4 and 7.7). After 16 h incubation, c-di-GMP and cAMP were extracted and their concentrations determined. Biofilm formation was investigated using an xCelligence real-time cell analyzer and by crystal violet assay. Our results show that HCO3− exposure decreased c-di-GMP and increased cAMP levels in a dose-dependent manner. Biofilm formation was also reduced after 48 h exposure to HCO3−. The reciprocal changes in second messenger concentrations were not influenced by changes in medium pH or osmolality. These findings indicate that HCO3− per se modulates the levels of c-di-GMP and cAMP, thereby inhibiting biofilm formation and promoting the planktonic lifestyle of the bacteria.


1992 ◽  
Vol 70 (S1) ◽  
pp. S362-S366 ◽  
Author(s):  
A. S. Bender ◽  
J. T. Neary ◽  
M. D. Norenberg

In a hypoosmotic model of astrocyte swelling, we found that Ca2+ and intracellular signals such as diacylglycerol and inositol phosphate, as well as protein phosphorylation systems, are implicated in the generation and (or) modulation of volume regulatory processes. Cyclic AMP, which also has a significant effect on astrocyte volume regulation, in addition influences some of these second messengers.Key words: astrocyte, Ca2+-dependent protein kinases, Ca2+ influx, cell volume, cyclic AMP, inositol phosphates, protein phosphorylation.


1976 ◽  
Vol 71 (2) ◽  
pp. 515-534 ◽  
Author(s):  
C E Zeilig ◽  
R A Johnson ◽  
E W Sutherland ◽  
D L Friedman

The involvement of adenosine 3':5'-monophosphate (cAMP) in the regulation of the cell cycle was studied by determining intracellular fluctuations in cAMP levels in synchronized HeLa cells and by testing the effects of experimentally altered levels on cell cycle traverse. Cyclic AMP levels were lowest during mitosis and were highest during late G-1 or early S phase. These findings were supported by results obtained when cells were accumulated at these points with Colcemid or high levels of thymidine. Additional fluctuations in cAMP levels were observed during S phase. Two specific effects of cAMP on cell cycle traverse were found. Elevation of cAMP levels in S phase or G-2 caused arrest of cells in G-2 for as long as 10 h and lengthened M. However, once cells reached metaphase, elevation of cAMP accelerated the completion of mitosis. Stimulation of mitosis was also observed after addition of CaCl2. The specificity of the effects of cAMP was verified by demonstrating that: (a) intracellular cAMP was increased after exposure to methylisobutylxanthine (MIX) before any observed effects on cycle traverse; (b) submaximal concentrations of MIX potentiated the effects of isoproterenol; and (c) effects of MIX and isoproterenol were mimicked by 8-Br-cAMP. MIX at high concentrations inhibited G-1 traverse, but this effect did not appear to be mediated by cAMP. Isoproterenol slightly stimulated G-1 traverse and partially prevented the MIX-induced delay. Moreover, low concentrations of 8-Br-cAMP (0.10-100 muM) stimulated G-1 traverse, whereas high concentrations (1 mM) inhibited. Both of these effects were also observed with the control, Br-5'-AMP, at 10-fold lower concentrations.


2000 ◽  
Vol 113 (20) ◽  
pp. 3573-3582 ◽  
Author(s):  
A. Menegon ◽  
D.D. Dunlap ◽  
F. Castano ◽  
F. Benfenati ◽  
A.J. Czernik ◽  
...  

We have developed a semi-quantitative method for indirectly revealing variations in the concentration of second messengers (Ca(2+), cyclic AMP) in single presynaptic boutons by detecting the phosphorylation of the synapsins, excellent nerve terminal substrates for cyclic AMP- and Ca(2+)/calmodulin-dependent protein kinases. For this purpose, we employed polyclonal, antipeptide antibodies recognising exclusively synapsin I phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (at site 3) or synapsins I/II phosphorylated by either cAMP-dependent protein kinase or Ca(2+)/calmodulin-dependent protein kinase I (at site 1). Cerebellar granular neurones in culture were double-labelled with a monoclonal antibody to synapsins I/II and either of the polyclonal antibodies. Digitised images were analysed to determine the relative phosphorylation stoichiometry at each individual nerve terminal. We have found that: (i) under basal conditions, phosphorylation of site 3 was undetectable, whereas site 1 exhibited some degree of constitutive phosphorylation; (ii) depolarisation in the presence of extracellular Ca(2+) was followed by a selective and widespread increase in site 3 phosphorylation, although the relative phosphorylation stoichiometry varied among individual terminals; and (iii) phosphorylation of site 1 was increased by stimulation of cyclic AMP-dependent protein kinase but not by depolarisation and often occurred in specific nerve terminal sub-populations aligned along axon branches. In addition to shedding light on the regulation of synapsin phosphorylation in living nerve terminals, this approach permits the spatially-resolved analysis of the activation of signal transduction pathways in the presynaptic compartment, which is usually too small to be studied with other currently available techniques.


2000 ◽  
Vol 113 (3) ◽  
pp. 365-375 ◽  
Author(s):  
D. Pruyne ◽  
A. Bretscher

The ability to polarize is a fundamental property of cells. The yeast Saccharomyces cerevisiae has proven to be a fertile ground for dissecting the molecular mechanisms that regulate cell polarity during growth. Here we discuss the signaling pathways that regulate polarity. In the second installment of this two-part commentary, which appears in the next issue of Journal of Cell Science, we discuss how the actin cytoskeleton responds to these signals and guides the polarity of essentially all events in the yeast cell cycle. During the cell cycle, yeast cells assume alternative states of polarized growth, which range from tightly focused apical growth to non-focused isotropic growth. RhoGTPases, and in particular Cdc42p, are essential to guiding this polarity. The distribution of Cdc42p at the cell cortex establishes cell polarity. Cyclin-dependent protein kinase, Ras, and heterotrimeric G proteins all modulate yeast cell polarity in part by altering the distribution of Cdc42p. In turn, Cdc42p generates feedback signals to these molecules in order to establish stable polarity states and coordinate cytoskeletal organization with the cell cycle. Given that many of these signaling pathways are present in both fungi and animals, they are probably ancient and conserved mechanisms for regulating polarity.


mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Jonathan A. Robbins ◽  
Sabrina Absalon ◽  
Vincent A. Streva ◽  
Jeffrey D. Dvorin

ABSTRACT All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G1-, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We demonstrate that P. falciparum Cyc1 (PfCyc1), a transcriptional cyclin homolog, complements a cell cycle cyclin-deficient yeast strain but not a transcriptional cyclin-deficient strain. We show that PfCyc1 forms a complex in the parasite with PfMRK and the P. falciparum MAT1 homolog. PfCyc1 is essential and nonredundant in blood-stage P. falciparum. PfCyc1 knockdown causes a stage-specific arrest after nuclear division, demonstrating morphologically aberrant cytokinesis. This work demonstrates a conserved PfCyc1/PfMAT1/PfMRK complex in malaria and suggests that it functions as a schizont stage-specific regulator of the P. falciparum life cycle.


1991 ◽  
Vol 279 (2) ◽  
pp. 521-527 ◽  
Author(s):  
M Sandberg ◽  
E Butt ◽  
C Nolte ◽  
L Fischer ◽  
M Halbrügge ◽  
...  

A newly designed cyclic AMP (cAMP) analogue, Sp-5,6-dichloro-1-beta-D- ribofuranosylbenzimidazole-3′,5′-monophosphorothioate (Sp-5,6-DCl-cBiMPS), and 8-(p-chlorophenylthio)-cAMP (8-pCPT-cAMP) were compared with respect to their chemical and biological properties in order to assess their potential as activators of the cAMP-dependent protein kinases (cAMP-PK) in intact cells. Sp-5,6-DCl-cBiMPS was shown to be both a potent and specific activator of purified cAMP-PK and of cAMP-PK in platelet membranes, whereas 8-pCPT-cAMP proved to be a potent activator of cAMP-PK and cyclic-GMP-dependent protein kinase (cGMP-PK) both as purified enzymes and in platelet membranes. Sp-5,6-DCl-cBiMPS was not significantly hydrolysed by three types of cyclic nucleotide phosphodiesterases, whereas 8-pCPT-cAMP (and 8-bromo-cAMP) was hydrolysed to a significant extent by the Ca2+/calmodulin-dependent phosphodiesterase and by the cGMP-inhibited phosphodiesterase. The apparent lipophilicity, a measure of potential cell-membrane permeability, of Sp-5,6-DCl-cBiMPS was higher than that of 8-pCPT-cAMP. Extracellular application of Sp-5,6-DCl-cBiMPS to intact human platelets reproduced the pattern of protein phosphorylation induced by prostaglandin E1, a cAMP-increasing inhibitor of platelet activation. In intact platelets, Sp-5,6- DCl-cBiMPS was also more effective than 8-pCPT-cAMP in inducing quantitative phosphorylation of the 46/50 kDa vasodilator-stimulated phosphoprotein (VASP), a major substrate of cAMP-PK in platelets. As observed with prostaglandin E1, pretreatment of human platelets with Sp-5,6-DCl-cBiMPS prevented the aggregation induced by thrombin. The results suggest that Sp-5,6-DCl-cBiMPS is a very potent and specific activator of cAMP-PK in cell extracts and intact cells and, in this respect, is superior to any other cAMP analogue used for intact-cell studies. In contrast with 8-pCPT-cAMP, Sp-5,6-DCl-cBiMPS can be used to distinguish the signal-transduction pathways mediated by cAMP-PK and cGMP-PK.


1999 ◽  
Vol 77 (6) ◽  
pp. 422-431 ◽  
Author(s):  
Harvey R Weiss ◽  
Gary X Gong ◽  
Michaela Straznicka ◽  
Lin Yan ◽  
James Tse ◽  
...  

We tested the hypothesis that the negative functional effects of cyclic GMP (cGMP) would be greater after increasing cyclic AMP (cAMP), because of the action of cGMP-affected cAMP phosphodiesterases in cardiac myocytes and that this effect would be altered in left ventricular hypertrophy (LVH) produced by aortic valve plication. Myocyte shortening data were collected using a video edge detector, and O2 consumption was measured by O2 electrodes during stimulation (5 ms, 1 Hz, in 2 mM Ca2+) from control (n = 7) and LVH (n = 7) dog ventricular myocytes. cAMP and cGMP were determined by a competitive binding assay. cAMP was increased by forskolin and milrinone (10-6 M). cGMP was increased with zaprinast and decreased by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxilin-1-one (ODQ) both at 10-6 and 10-4 M, with and without forskolin or forskolin + milrinone. Zaprinast significantly decreased percent shortening in control (9 ± 1 to 7 ± 1%) and LVH (10 ± 1 to 7 ± 1%) myocytes. It increased cGMP in control (36 ± 5 to 52 ± 7 fmol/105 myocytes) and from the significantly higher baseline value in LVH (71 ± 12 to 104 ± 18 fmol/105 myocytes). ODQ increased myocyte function and decreased cGMP levels in control and LVH myocytes. Forskolin + milrinone increased cAMP levels in control (6 ± 1 to 15 ± 2 pmol/105 myocytes) and LVH (8 ± 1 to 18 ± 2 pmol/105 myocytes) myocytes, as did forskolin alone. They also significantly increased percent shortening. There were significant negative functional effects of zaprinast after forskolin + milrinone in control (15 ± 2 to 9 ± 1%), which were greater than zaprinast alone, and LVH (12 ± 1 to 9 ± 1%). This was associated with an increase in cGMP and a reduction in the increased cAMP induced by forskolin or milrinone. ODQ did not further increase function after forskolin or milrinone in control myocytes, despite lowering cGMP. However, it prevented the forskolin and milrinone induced increase in cAMP. In hypertrophy, ODQ lowered cGMP and increased function after forskolin. ODQ did not affect cAMP after forskolin and milrinone in LVH. Thus, the level of cGMP was inversely correlated with myocyte function. When cAMP levels were elevated, cGMP was still inversely correlated with myocyte function. This was, in part, related to alterations in cAMP. The interaction between cGMP and cAMP was altered in LVH myocytes.Key words: second messengers, cyclic AMP, cyclic GMP, cardiac myocyte function, cyclic GMP dependent cyclic-AMP phosphodiesterases, left ventricular hypertrophy, dog.


2020 ◽  
Vol 69 (3) ◽  
Author(s):  
Bárbara K.M. Dias ◽  
Myna Nakabashi ◽  
Marina Rangel Rodrigues Alves ◽  
Danielle Pagliaminuto Portella ◽  
Benedito Matheus Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document