scholarly journals Nuclear congression is driven by cytoplasmic microtubule plus end interactions in S. cerevisiae

2005 ◽  
Vol 172 (1) ◽  
pp. 27-39 ◽  
Author(s):  
Jeffrey N. Molk ◽  
E.D. Salmon ◽  
Kerry Bloom

Nuclear movement before karyogamy in eukaryotes is known as pronuclear migration or as nuclear congression in Saccharomyces cerevisiae. In this study, S. cerevisiae is used as a model system to study microtubule (MT)-dependent nuclear movements during mating. We find that nuclear congression occurs through the interaction of MT plus ends rather than sliding and extensive MT overlap. Furthermore, the orientation and attachment of MTs to the shmoo tip before cell wall breakdown is not required for nuclear congression. The MT plus end–binding proteins Kar3p, a class 14 COOH-terminal kinesin, and Bik1p, the CLIP-170 orthologue, localize to plus ends in the shmoo tip and initiate MT interactions and depolymerization after cell wall breakdown. These data support a model in which nuclear congression in budding yeast occurs by plus end MT capture and depolymerization, generating forces sufficient to move nuclei through the cytoplasm. This is the first evidence that MT plus end interactions from oppositely oriented organizing centers can provide the force for organelle transport in vivo.

2006 ◽  
Vol 72 (11) ◽  
pp. 7140-7147 ◽  
Author(s):  
Frank Breinig ◽  
Björn Diehl ◽  
Sabrina Rau ◽  
Christian Zimmer ◽  
Helmut Schwab ◽  
...  

ABSTRACT Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.


2011 ◽  
Vol 392 (6) ◽  
Author(s):  
Patrycja Zembek ◽  
Urszula Perlińska-Lenart ◽  
Katarzyna Rawa ◽  
Wioletta Górka-Nieć ◽  
Grażyna Palamarczyk ◽  
...  

AbstractInTrichoderma reesei, dolichyl phosphate mannose (dpm) synthase, a key enzyme in the O-glycosylation process, requires three proteins for full activity. In this study, thedpm2anddpm3genes coding for the DPMII and DPMIII subunits ofT. reeseiDPM synthase were cloned and functionally analyzed after expression in theSaccharomyces cerevisiae dpm1Δ[genotype (BY4743;his3Δ1; /leu2Δ0; lys2Δ0; /ura3Δ0; YPR183w::kanMX4] mutant. It was found that apart from the catalytic subunit DPMI, the DPMIII subunit is also essential to form an active DPM synthase in yeast. Additional expression of the DPMII protein, considered to be a regulatory subunit of DPM synthase, decreased the enzymatic activity. We also characterizedS. cerevisiaestrains expressing thedpm1,2,3ordpm1, 3genes and analyzed the consequences ofdpmexpression on protein O-glycosylationin vivoand on the cell wall composition.


1993 ◽  
Vol 13 (3) ◽  
pp. 1805-1814
Author(s):  
H Wang ◽  
D J Stillman

The yeast SIN3 gene (also known as SDI1, UME4, RPD1, and GAM2) has been identified as a transcriptional regulator. Previous work has led to the suggestion that SIN3 regulates transcription via interactions with DNA-binding proteins. Although the SIN3 protein is located in the nucleus, it does not bind directly to DNA in vitro. We have expressed a LexA-SIN3 fusion protein in Saccharomyces cerevisiae and show that this fusion protein represses transcription from heterologous promoters that contain lexA operators. The predicted amino acid sequence of the SIN3 protein contains four copies of a paired amphipathic helix (PAH) motif, similar to motifs found in HLH (helix-loop-helix) and TPR (tetratricopeptide repeat) proteins, and these motifs are proposed to be involved in protein-protein interactions. We have conducted a deletion analysis of the SIN3 gene and show that the PAH motifs are required for SIN3 activity. Additionally, the C-terminal region of the SIN3 protein is sufficient for repression activity in a LexA-SIN3 fusion, and deletion of a PAH motif in this region inactivates this repression activity. A model is presented in which SIN3 recognizes specific DNA-binding proteins in vivo in order to repress transcription.


1987 ◽  
Vol 7 (8) ◽  
pp. 2947-2955
Author(s):  
A Y Jong ◽  
M W Clark ◽  
M Gilbert ◽  
A Oehm ◽  
J L Campbell

To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.


Genetics ◽  
2014 ◽  
Vol 197 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Andrea A. Duina ◽  
Mary E. Miller ◽  
Jill B. Keeney

2005 ◽  
Vol 25 (15) ◽  
pp. 6772-6788 ◽  
Author(s):  
Karen Rothfels ◽  
Jason C. Tanny ◽  
Enikö Molnar ◽  
Helena Friesen ◽  
Cosimo Commisso ◽  
...  

ABSTRACT The divergently transcribed DIT1 and DIT2 genes of Saccharomyces cerevisiae, which belong to the mid-late class of sporulation-specific genes, are subject to Ssn6-Tup1-mediated repression in mitotic cells. The Ssn6-Tup1 complex, which is required for repression of diverse sets of coordinately regulated genes, is known to be recruited to target genes by promoter-specific DNA-binding proteins. In this study, we show that a 42-bp negative regulatory element (NRE) present in the DIT1-DIT2 intergenic region consists of two distinct subsites and that a multimer of each subsite supports efficient Ssn6-Tup1-dependent repression of a CYC1-lacZ reporter gene. By genetic screening procedures, we identified DFG16, YGR122w, VPS36, and the DNA-binding proteins Rim101 and Nrg1 as potential mediators of NRE-directed repression. We show that Nrg1 and Rim101 bind simultaneously to adjacent target sites within the NRE in vitro and act as corepressors in vivo. We have found that the ability of Rim101 to be proteolytically processed to its active form and mediate NRE-directed repression not only depends on the previously characterized RIM signaling pathway but also requires Dfg16, Ygr122w, and components of the ESCRT trafficking pathway. Interestingly, Rim101 was processed in bro1 and doa4 strains but was unable to mediate efficient repression.


2004 ◽  
Vol 24 (15) ◽  
pp. 6620-6630 ◽  
Author(s):  
Gerhard Wieland ◽  
Sandra Orthaus ◽  
Sabine Ohndorf ◽  
Stephan Diekmann ◽  
Peter Hemmerich

ABSTRACT We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenotypes. Cse4p, the budding yeast CENP-A homolog, was specifically incorporated into kinetochore nucleosomes and was able to complement RNAi-induced cell cycle arrest in CENP-A-depleted human cells. Thus, Cse4p can structurally and functionally substitute for CENP-A, strongly suggesting that the basic features of centromeric chromatin are conserved between yeast and mammals. Bik1p, the budding yeast homolog of human CLIP-170, also specifically localized to kinetochores during mitosis, but Bik1p did not rescue CLIP-170 depletion-induced cell cycle arrest. Generally, the newly developed in vivo complementation assay provides a powerful new tool for studying the function and evolutionary conservation of multiprotein complexes from yeast to humans.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Judith Gunzelmann ◽  
Diana Rüthnick ◽  
Tien-chen Lin ◽  
Wanlu Zhang ◽  
Annett Neuner ◽  
...  

Stu2/XMAP215/ZYG-9/Dis1/Alp14/Msps/ch-TOG family members in association with with γ-tubulin complexes nucleate microtubules, but we know little about the interplay of these nucleation factors. Here, we show that the budding yeast Stu2 in complex with the γ-tubulin receptor Spc72 nucleates microtubules in vitro without the small γ-tubulin complex (γ-TuSC). Upon γ-TuSC addition, Stu2 facilitates Spc72–γ-TuSC interaction by binding to Spc72 and γ-TuSC. Stu2 together with Spc72–γ-TuSC increases microtubule nucleation in a process that is dependent on the TOG domains of Stu2. Importantly, these activities are also important for microtubule nucleation in vivo. Stu2 stabilizes Spc72–γ-TuSC at the minus end of cytoplasmic microtubules (cMTs) and an in vivo assay indicates that cMT nucleation requires the TOG domains of Stu2. Upon γ-tubulin depletion, we observed efficient cMT nucleation away from the spindle pole body (SPB), which was dependent on Stu2. Thus, γ-TuSC restricts cMT assembly to the SPB whereas Stu2 nucleates cMTs together with γ-TuSC and stabilizes γ-TuSC at the cMT minus end.


Sign in / Sign up

Export Citation Format

Share Document