scholarly journals Dynamics of inner kinetochore assembly and maintenance in living cells

2008 ◽  
Vol 180 (6) ◽  
pp. 1101-1114 ◽  
Author(s):  
Peter Hemmerich ◽  
Stefanie Weidtkamp-Peters ◽  
Christian Hoischen ◽  
Lars Schmiedeberg ◽  
Indri Erliandri ◽  
...  

To investigate the dynamics of centromere organization, we have assessed the exchange rates of inner centromere proteins (CENPs) by quantitative microscopy throughout the cell cycle in human cells. CENP-A and CENP-I are stable centromere components that are incorporated into centromeres via a “loading-only” mechanism in G1 and S phase, respectively. A subfraction of CENP-H also stays stably bound to centromeres. In contrast, CENP-B, CENP-C, and some CENP-H and hMis12 exhibit distinct and cell cycle–specific centromere binding stabilities, with residence times ranging from seconds to hours. CENP-C and CENP-H are immobilized at centromeres specifically during replication. In mitosis, all inner CENPs become completely immobilized. CENPs are highly mobile throughout bulk chromatin, which is consistent with a binding-diffusion behavior as the mechanism to scan for vacant high-affinity binding sites at centromeres. Our data reveal a wide range of cell cycle–specific assembly plasticity of the centromere that provides both stability through sustained binding of some components and flexibility through dynamic exchange of other components.

2019 ◽  
Vol 218 (12) ◽  
pp. 4042-4062 ◽  
Author(s):  
Reito Watanabe ◽  
Masatoshi Hara ◽  
Ei-ichi Okumura ◽  
Solène Hervé ◽  
Daniele Fachinetti ◽  
...  

The kinetochore is essential for faithful chromosome segregation during mitosis. To form a functional kinetochore, constitutive centromere-associated network (CCAN) proteins are assembled on the centromere chromatin that contains the centromere-specific histone CENP-A. CENP-C, a CCAN protein, directly interacts with the CENP-A nucleosome to nucleate the kinetochore structure. As CENP-C is a hub protein for kinetochore assembly, it is critical to address how the CENP-A–CENP-C interaction is regulated during cell cycle progression. To address this question, we investigated the CENP-C C-terminal region, including a conserved CENP-A–binding motif, in both chicken and human cells and found that CDK1-mediated phosphorylation of CENP-C facilitates its binding to CENP-A in vitro and in vivo. We observed that CENP-A binding is involved in CENP-C kinetochore localization during mitosis. We also demonstrate that the CENP-A–CENP-C interaction is critical for long-term viability in human RPE-1 cells. These results provide deeper insights into protein-interaction network plasticity in centromere proteins during cell cycle progression.


1989 ◽  
Vol 93 (1) ◽  
pp. 199-204
Author(s):  
M. Krefft ◽  
C.J. Weijer

We have previously shown binding of a monoclonal antibody MUD 9 to the cell surface of Dictyostelium discoideum amoebae and slug cells. In the slug stage the prestalk region was predominantly labelled, while vegetative amoebae showed a great heterogeneity in binding. In the present paper it is shown that the heterogeneous label of vegetative amoebae is due to differences in MUD 9 binding by cells in different cell cycle phases. Cells were synchronized by dilution from stationary phase and the level of MUD 9 binding was determined. Synchrony was determined by investigating increase in cell number and changes in the volume distribution of the cells, and by estimating the number of cells in S phase by monitoring bromodeoxyuridine (BUdR) incorporation. Simultaneously the amount of MUD 9 binding was determined by quantitative microscopy and flow cytometry. The amount of MUD 9 label varies during the cell cycle. The highest amount of label is found on cells early in the cell cycle, i.e. S-phase. These results support the finding that the developmental fate of Dictyostelium discoideum cells depends among other things on the cell cycle position of the cells at the moment of starvation.


1996 ◽  
Vol 16 (2) ◽  
pp. 634-647 ◽  
Author(s):  
J Wells ◽  
P Held ◽  
S Illenye ◽  
N H Heintz

In mammals, two TATA-less bidirectional promoters regulate expression of the divergently transcribed dihydrofolate reductase (dhfr) and rep3 genes. In CHOC 400 cells, dhfr mRNA levels increase about fourfold during the G1-to-S phase transition of the cell cycle, whereas the levels of rep3 transcripts vary less than twofold during this time. To assess the role of DNA-binding proteins in transcriptional regulation of the dhfr and rep3 genes, the major and minor dhfr-rep3 promoter regions were analyzed by high-resolution genomic footprinting during the cell cycle. At the major dhfr promoter, prominent DNase I footprints over four upstream Sp1 binding sites did not vary throughout G1 and entry into the S phase. Genomic footprinting revealed that a protein is constitutively bound to the overlapping E2F sites throughout the G1-to-S phase transition, an interaction that is most evident on the transcribed template strand. On the nontranscribed strand, multiple changes in the DNase I cleavage pattern are observed during transit through G1 and entry into the S phase. By using gel mobility shift assays and a series of sequence-specific probes, two different species of E2F were shown to interact with the dhfr promoter during the cell cycle. The DNA binding activity of one E2F species, which preferentially recognizes the sequence TTTGGCGC, did not vary significantly during the cell cycle. The DNA binding activity of the second E2F species, which preferentially recognizes the sequence TTTCGCGC, increased during the G1-to-S phase transition. Together, these results indicate that Sp1 and the species of E2F that binds TTTGGCGC participate in the formation of a basal transcription complex, while the species of E2F that binds TTTCGCGC regulates dhfr gene expression during the G1-to-S phase transition. At the minor promoter, DNase I footprints at a consensus c-Myc binding site and three Sp1 binding sites showed little variation during the G1-to-S phase transition. In addition to protein binding at sequences known to be involved in the regulation of transcription, genomic footprinting of the entire promoter region also showed that a protein factor is constitutively bound to the first intron of the rep3 gene.


1995 ◽  
Vol 15 (12) ◽  
pp. 6901-6913 ◽  
Author(s):  
S Tommasi ◽  
G P Pfeifer

In quiescent cells, cdc2 mRNA is almost undetectable. Stimulation of cells to reenter the cell cycle results in induction of cdc2 expression, beginning at the G1-to-S transition and reaching maximum levels during late S and G2 phases. To investigate cdc2 transcriptional regulation throughout cell cycle progression, we monitored protein-DNA interactions by in vivo footprinting along 800 bp of the human cdc2 promoter in quiescent fibroblasts and at different time points following serum stimulation. We found 11 in vivo protein-binding sites, but no protein binding was observed at a high-affinity E2F site that had previously been implicated in cdc2 regulation. Nine of the identified in vivo binding sites (among them were two inverted CCAAT boxes, two Sp1 sites, and one ets-2 site) bind transcription factors constitutively throughout the cell cycle. However, at two elements located at positions -60 and -20 relative to the transcription start site, the binding pattern changes significantly as the cells are entering S phase. A G0- and G1-specific protein complex disappears at the -20 element at the beginning of S phase. This sequence deviates at one base position from known E2F consensus binding sites. We found that the major E2F activity in human fibroblasts contains E2F-4 and p130. The -20 element of the cdc2 gene specifically interacts with a subset of E2F-4-p130 complexes present in G0 cells but does not interact with S-phase-specific E2F complexes. Transient-transfection experiments with wild-type and mutant cdc2 promoter constructs indicate that the -20 element is involved in suppressing cdc2 activity in quiescent cells. We suggest that the presence of the p130-E2F-4 complex in G0/G1 blocks access of components of the basal transcription machinery or prevents transaction by the constitutively bound upstream activator proteins.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 553-553
Author(s):  
Marie-Claude Sincennes ◽  
Magali Humbert ◽  
Benoit Grondin ◽  
Christophe Cazaux ◽  
Veronique Lisi ◽  
...  

Abstract Oncogenic transcription factors are major drivers in acute leukemias. These oncogenes are believed to subvert normal cell identity via the establishment of gene expression programs that dictate cell differentiation and growth. The LMO2 oncogene, which is commonly activated in T-cell acute lymphoblastic leukemia (T-ALL), has a well-established function in transcription regulation. We and others previously demonstrated that LMO1 or LMO2 collaborate with the SCL transcription factor to activate a self-renewal program that converts non self-renewing progenitors into pre-leukemic stem cells. Here we demonstrate a non-transcriptional role of LMO2 in controlling cell fate by directly promoting DNA replication, a hitherto unrecognized mechanism that might also account for its oncogenic properties. To address the question whether LMO2 controls other functions via protein-protein interactions, we performed a proteome-wide screen for LMO2 interaction partners in Kit+ Lin- cells. In addition to known LMO2-interacting proteins such as LDB1 and to proteins associated with transcription, we unexpectedly identified new interactions with three essential DNA replication enzymes, namely minichromosome 6 (MCM6), DNA polymerase delta (POLD1) and DNA primase (PRIM1). First, we show that in Kit+ hematopoietic cells (TF-1), all components of the pre-replication complex co-immunoprecipitate with LMO2 but not with SCL, suggesting a novel SCL-independent function. Second, LMO2 is recruited to DNA replication origins in these cells together with MCM5. Third, tethering LMO2 to synthetic DNA sequences is sufficient to transform these into origins of replication. Indeed, we show by DNA capture that LMO2 fused to the DNA binding domain of GAL4 is sufficient to recruit DNA replication proteins to GAL4 binding sites on DNA. In vivo, this recruitment is sufficient to drive DNA replication in a manner which is dependent on the integrity of the GAL4 binding sites. These results provide unambiguous evidence for a role of LMO2 in directly controlling DNA replication. Cell cycle and cell differentiation are tightly coordinated during normal hematopoiesis, both during erythroid differentiation and during thymocyte development. We next addressed the functional importance of LMO2 in these two lineages. Erythroid cell differentiation proceeds through different stages from the CD71+Ter119- to the CD71-Ter119+. These stages are also distinguishable by morphological criteria. We observe that LMO2 protein levels directly correlate with the proportion of cells in S phase, i.e. both LMO2 levels and the proportions of cycling cells decrease with terminal erythroid differentiation. Strikingly, lowering LMO2 levels in fetal liver erythroid progenitors via shRNAs decreases the proportion of cells in S phase and arrests Epo-dependent cell growth. Despite a drastic decrease in the numbers of erythroid precursors, these cells differentiate readily to the CD71-Ter119+ stage. Therefore, LMO2 levels dictate cell fate in the erythroid lineage, by favoring DNA replication at the expense of terminal maturation. Conversely, ectopic expression in thymocytes induces DNA replication and drives cells into cell cycle, causing differentiation blockade. Our results define a novel role for the oncogenic transcription factor LMO2 in directly promoting DNA synthesis. To our knowledge, this is the first evidence for a non-transcriptional function of the LMO2 oncogene that drives cell cycle at the expense of differentiation, favouring progenitor cell expansion in the thymus, and causing T-ALL when ectopically expressed in the T lineage. We propose that the non-transcriptional control of DNA replication uncovered here for LMO2 may be a more common function of oncogenic transcription factors than previously appreciated. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
◽  
Robert Haydn Thomson

<p>Bartonella quintana is an important re-emerging human pathogen and the causative agent of trench fever. It utilizes a stealth invasion strategy to infect hosts and is transmitted by lice. Throughout infection it is crucial for the bacteria to maintain a tight regulation of cell division, to prevent immune detection and allow for transmission to new hosts. CtrA is an essential master cell cycle regulatory protein found in the alpha-proteobacteria. It regulates many genes, ensuring the appropriate timing of gene expression and DNA replication. In the model organism Caulobacter crescentus, it regulates 26% of cell cycle-regulated genes. CtrA has been reported to bind two specific DNA motifs in gene promoter regions, TTAAN7TTAAC, and TTAACCAT. Genes regulated by CtrA encode proteins with a wide range of activities, including initiation of DNA replication, cell division, DNA methylation, polar morphogenesis, flagellar biosynthesis, and cell wall metabolism. However, the role of the CtrA homologue in Bartonella spp. has not been investigated. In this project we aimed to make an initial characterisation of the master cell cycle regulator CtrA. This was done by identifying gene regulatory regions containing putative CtrA binding sites and testing for direct interactions via a -galactosidase assay. It was found B. quintana CtrA shared 81 % amino acid identity with its C. crescentus homologue. Within the genome of B. quintana str. Toulouse we discovered 21 genes containing putative CtrA binding sites in their regulatory regions. Of these genes we demonstrated interactions between CtrA and the promoter region of ftsE a cell division gene [1], hemS, and hbpC, two heme regulatory genes. We also found no evidence of CtrA regulating its own expression, which was unexpected because CtrA autoregulation has been demonstrated in C. crescentus.</p>


2016 ◽  
Author(s):  
Pim J. Huis in ’t Veld ◽  
Sadasivam Jeganathan ◽  
Arsen Petrovic ◽  
Juliane John ◽  
Priyanka Singh ◽  
...  

Stable kinetochore-microtubule attachment is essential for cell division. It requires recruitment of outer kinetochore microtubule binders by centromere proteins C and T (CENP-C and CENP-T). To study the molecular requirements of kinetochore formation, we reconstituted the binding of the MIS12 and NDC80 outer kinetochore subcomplexes to CENP-C and CENP-T. Whereas CENP-C recruits a single MIS12:NDC80 complex, we show here that CENP-T binds one MIS12:NDC80 and two NDC80 complexes upon phosphorylation by the mitotic CDK1:Cyclin B complex at three distinct CENP-T sites. Visualization of reconstituted complexes by electron microscopy supports this model. Binding of CENP-C and CENP-T to MIS12 is competitive, and therefore CENP-C and CENP-T act in parallel to recruit two MIS12 and up to four NDC80 complexes. Our observations provide a molecular explanation for the stoichiometry of kinetochore components and its cell cycle regulation, and highlight how outer kinetochore modules bridge distances of well over 100 nm.


2021 ◽  
Author(s):  
Giulia Laura Celora ◽  
Philip K Maini ◽  
Helen M Byrne ◽  
Ester M Hammond ◽  
Samuel B Bader ◽  
...  

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments, to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into four compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle when they exit the S phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.


2021 ◽  
Author(s):  
◽  
Robert Haydn Thomson

<p>Bartonella quintana is an important re-emerging human pathogen and the causative agent of trench fever. It utilizes a stealth invasion strategy to infect hosts and is transmitted by lice. Throughout infection it is crucial for the bacteria to maintain a tight regulation of cell division, to prevent immune detection and allow for transmission to new hosts. CtrA is an essential master cell cycle regulatory protein found in the alpha-proteobacteria. It regulates many genes, ensuring the appropriate timing of gene expression and DNA replication. In the model organism Caulobacter crescentus, it regulates 26% of cell cycle-regulated genes. CtrA has been reported to bind two specific DNA motifs in gene promoter regions, TTAAN7TTAAC, and TTAACCAT. Genes regulated by CtrA encode proteins with a wide range of activities, including initiation of DNA replication, cell division, DNA methylation, polar morphogenesis, flagellar biosynthesis, and cell wall metabolism. However, the role of the CtrA homologue in Bartonella spp. has not been investigated. In this project we aimed to make an initial characterisation of the master cell cycle regulator CtrA. This was done by identifying gene regulatory regions containing putative CtrA binding sites and testing for direct interactions via a -galactosidase assay. It was found B. quintana CtrA shared 81 % amino acid identity with its C. crescentus homologue. Within the genome of B. quintana str. Toulouse we discovered 21 genes containing putative CtrA binding sites in their regulatory regions. Of these genes we demonstrated interactions between CtrA and the promoter region of ftsE a cell division gene [1], hemS, and hbpC, two heme regulatory genes. We also found no evidence of CtrA regulating its own expression, which was unexpected because CtrA autoregulation has been demonstrated in C. crescentus.</p>


Author(s):  
A.W. Coleman ◽  
M.J. Maguire

Biochemical analyses have shown that leaf plastid material/cell, both genomes and other materials, increase during growth and in response to light and other cues. However, the biochemical methods inevitably express results as an average per cell, leaving the precise timing of events in the cell cycle and course of ontogeny uncertain, and the variation in guantity/cell largely unknown. The power of quantitative microscopy lies in the capability of determining information on the single cell or single plastid level.To test the feasibility of using microscopic methods to study plastid growth and variability, we chose as an analog of the plant meristematic cell, the photosynthetic alga Ochromonas danica. This unicellular Chrysophyte combines a number of advantageous features. It typically has but 1-2 plastids and these occupy only a small proportion of the cell volume. Secondly, Ochromonas grows rapidly both in light and in darkness to high cell densities. Thirdly, the cell lacks a wall, so that its contents can be examined in detail in living cells flattened beneath a coverslip. Thirdly, the organism synthesizes chlorophyll both in light and darkness, so that plastids in living cells, however small, can be distinguished by virtue of the autofluorescence of their chlorophyll. Finally, for measurement of DNA per plastid, the arrangement of plastid DNA in Ochromonas plastids, as a necklace closely underlying the perimeter of the plastid, ensures that when one has isolated, stained intact necklaces, one is measuring the entire DNA content of the plastid.


Sign in / Sign up

Export Citation Format

Share Document