scholarly journals A Cdo–Bnip-2–Cdc42 signaling pathway regulates p38α/β MAPK activity and myogenic differentiation

2008 ◽  
Vol 182 (3) ◽  
pp. 497-507 ◽  
Author(s):  
Jong-Sun Kang ◽  
Gyu-Un Bae ◽  
Min-Jeong Yi ◽  
Youn-Joo Yang ◽  
Ji-Eun Oh ◽  
...  

The p38α/β mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38α/β pathway scaffold protein JLP and, via JLP, p38α/β itself. We report that Cdo also interacts with Bnip-2, a protein that binds the small guanosine triphosphatase (GTPase) Cdc42 and a negative regulator of Cdc42, Cdc42 GTPase-activating protein (GAP). Moreover, Bnip-2 and JLP are brought together through mutual interaction with Cdo. Gain- and loss-of-function experiments with myoblasts indicate that the Cdo–Bnip-2 interaction stimulates Cdc42 activity, which in turn promotes p38α/β activity and cell differentiation. These results reveal a previously unknown linkage between a cell surface receptor and downstream modulation of Cdc42 activity. Furthermore, interaction with multiple scaffold-type proteins is a distinctive mode of cell surface receptor signaling and provides one mechanism for specificity of p38α/β activation during cell differentiation.

2009 ◽  
Vol 29 (15) ◽  
pp. 4130-4143 ◽  
Author(s):  
Gyu-Un Bae ◽  
Bok-Geon Kim ◽  
Hye-Jin Lee ◽  
Ji-Eun Oh ◽  
Su-Jae Lee ◽  
...  

ABSTRACT The p38 mitogen-activated protein kinase (MAPK) pathway is required for differentiation of skeletal myoblasts, but how the pathway is activated during this process is not well understood. One mechanism involves the cell surface receptor Cdo (also known as Cdon), which binds to Bnip-2 and JLP, scaffold proteins for Cdc42 and p38, respectively; formation of these complexes results in Bnip-2/Cdc42-dependent activation of p38. It has been reported that the tyrosine kinase Abl promotes myogenic differentiation in a manner dependent on its cytoplasmic localization, but the cytoplasmic signaling proteins with which it interacts to achieve this effect are unidentified. We report that Abl associates with both Cdo and JLP during myoblast differentiation. Abl binds a proline-rich motif in Cdo via its SH3 domain, and these regions of Abl and Cdo are required for their promyogenic effects. Cdo is important for full Abl kinase activity, and Abl is necessary for full activation of p38 MAPK, during myogenic differentiation. As seen with myoblasts depleted of Cdo, the diminished differentiation displayed by Abl-depleted cells is rescued by the expression of an activated form of the immediate upstream p38-activating kinase MAPK kinase 6. Abl's promyogenic effect is therefore linked to a multiprotein cell surface complex that regulates differentiation-dependent p38 activation.


2008 ◽  
Vol 196 (3) ◽  
pp. 509-517 ◽  
Author(s):  
A Scarlett ◽  
M P Parsons ◽  
P L Hanson ◽  
K K Sidhu ◽  
T P Milligan ◽  
...  

The aim of the present study was to examine whether triiodo-l-thyronine (T3) or l-thyroxine (T4) rapidly activated the mitogen-activated protein kinase (MAPK) intracellular signalling cascade in osteoblast-like cells and investigate whether this activation was initiated at the integrin αVβ3 cell surface receptor. Using PCR and western blotting, the expression of integrin αVβ3 mRNA and protein was demonstrated in the human osteoblast-like cell lines MG-63 and SaOS-2. The treatment of MG-63 cells with T3 (10 nM) or T4 (100 nM) for 10 min stimulated extracellular signal-regulated kinase activity (ERK, a component of the MAPK pathway) as determined by fluorescent immunocytochemistry and an immunocomplex activity assay (T3 by 10.7-fold, P<0.01 and T4 by 10.4-fold, P<0.01 compared with control). T3 (10 nM) and T4 (100 nM) also significantly stimulated thymidine incorporation into MG-63 cells by 2.3±0.7-fold (P<0.01) and 2.1±0.1-fold (P<0.05) respectively. To establish whether transient ERK activation via the integrin αVβ3 cell surface receptor mediated these effects, MG-63 cells were pretreated for 30 min with the specific MAPK kinase inhibitor, U0126 (1 μM), or an anti-integrin αVβ3-blocking antibody. Both pretreatments significantly inhibited T3- and T4-stimulated ERK activation and abolished T3-stimulated thymidine incorporation (P<0.01). T4-stimulated incorporation was significantly inhibited from 2.1- to 1.3-fold above control (P<0.05). Thus, our results suggest that T3 and T4 rapidly stimulate ERK activation in MG-63 cells via integrin αVβ3 and that one functional effect of this ERK activation is increased DNA synthesis.


2006 ◽  
Vol 175 (3) ◽  
pp. 383-388 ◽  
Author(s):  
Giichi Takaesu ◽  
Jong-Sun Kang ◽  
Gyu-Un Bae ◽  
Min-Jeong Yi ◽  
Clement M. Lee ◽  
...  

The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in cell differentiation, but the signaling mechanisms by which it is activated during this process are largely unknown. Cdo is an immunoglobulin superfamily member that functions as a component of multiprotein cell surface complexes to promote myogenesis. In this study, we report that the Cdo intracellular region interacts with JLP, a scaffold protein for the p38α/β MAPK pathway. Cdo, JLP, and p38α/β form complexes in differentiating myoblasts, and Cdo and JLP cooperate to enhance levels of active p38α/β in transfectants. Primary myoblasts from Cdo−/− mice, which display a defective differentiation program, are deficient in p38α/β activity, and the expression of an activated form of MKK6 (an immediate upstream activator of p38) rescues the ability of Cdo−/− cells to differentiate. These results document a novel mechanism of signaling during cell differentiation: the interaction of a MAPK scaffold protein with a cell surface receptor.


2020 ◽  
Author(s):  
Anh Hoang Le ◽  
Tamas Yelland ◽  
Nikki Paul ◽  
Loic Fort ◽  
Savvas Nikolaou ◽  
...  

The Scar/WAVE complex is the major driver of actin nucleation at the plasma membrane, resulting in lamellipodia and membrane ruffles. While lamellipodia aid migration, membrane ruffles can generate macropinosomes - cup-like structures - important for nutrient uptake and regulation of cell surface receptor levels. How macropinosomes are formed and the role of the actin machinery in their formation and resolution is still not well understood. Mammalian CYRI-B is a recently described negative regulator of the Scar/WAVE complex by RAC1 sequestration, but its other paralogue, CYRI-A has not been characterised. Here we implicate CYRI-A as a key regulator of macropinocytosis maturation and integrin internalisation from the cell surface. We find that CYRI-A is recruited to nascent macropinosomes in a transient but distinct burst, downstream of PIP3-mediated RAC1 activation to regulate actin polymerisation. CYRI-A precedes RAB5A recruitment to engulfed macropinocytic cups and departs as RAB5A is recruited, consistent with a role for CYRI-A as a local suppressor of actin dynamics, enabling the resolution of the macropinocytic cup. The suppression of integrin a5b1 uptake caused by the co-depletion of CYRI-A and B in Ewing sarcoma cells, leads to an enhancement of surface integrin levels and enhanced invasion and anchorage-independent growth in 3D. Thus CYRI-A is a dynamic regulator of integrin uptake via macropinocytosis, functioning together with CYRI-B to regulate integrin homeostasis on the cell surface.


2020 ◽  
pp. jbc.RA120.014352
Author(s):  
Jason Schapansky ◽  
Yelena Y Grinberg ◽  
David M Osiecki ◽  
Emily A Freeman ◽  
Stephen G Walker ◽  
...  

Rare sequence variants in the microglial cell surface receptor TREM2 have been shown to increase the risk for Alzheimer’s disease (AD). Disease-linked TREM2 mutations seem to confer a partial loss of function, and increasing TREM2 cell surface expression and thereby its function(s) might have therapeutic benefit in AD. However, druggable targets that could modulate microglial TREM2 surface expression are not known. To identify such targets, we conducted a screen of small molecule compounds with known pharmacology using human myeloid cells, searching for those that enhance TREM2 protein at the cell surface Inhibitors of the kinases MEK1/2 displayed the strongest and most consistent increases in cell surface TREM2 protein, identifying a previously unreported pathway for TREM2 regulation. Unexpectedly, inhibitors of the downstream effector ERK kinases did not have the same effect, suggesting that non-canonical MEK signaling regulates TREM2 trafficking. In addition, siRNA knockdown experiments confirmed that decreased MEK1 and MEK2 was required for this recruitment. In iPSC-derived microglia, MEK inhibition increased cell surface TREM2 only modestly, so various cytokines were used to alter iPSC microglia phenotype, making cells more sensitive to MEK inhibitor-induced TREM2 recruitment. Of those tested, only IFN-gamma priming prior to MEK inhibitor treatment resulted in greater TREM2 recruitment. These data identify the first known mechanisms for increasing surface TREM2 protein and TREM2-regulated function in human myeloid cells, and are the first to show a role for MEK1/MEK2 signaling in TREM2 activity.


2018 ◽  
Author(s):  
Akashi Sharma ◽  
Megha Agarwal ◽  
Amit Kumar ◽  
Pankaj Kumar ◽  
Masum Saini ◽  
...  

SummaryMyosin heavy chains (MyHCs) are contractile proteins that are part of the thick filaments of the functional unit of the skeletal muscle, the sarcomere. In addition to MyHCs that are part of the adult muscle contractile network, two MyHCs - MyHC-embryonic and -perinatal are expressed during muscle development and are only transiently expressed in the adult during regeneration. The functions performed by these MyHCs has been a long-standing question and using a targeted mouse allele, we have characterized the role of MyHC-embryonic. Analysis of loss-of-function mice reveals that lack of MyHC-embryonic leads to mis-regulation of other MyHCs, alterations in fiber size, fiber number and fiber type at neonatal stages. We also find that loss of MyHC-embryonic leads to mis-regulation of genes involved in muscle differentiation. A broad theme from these studies is that loss of MyHC-embryonic has distinct effects on different muscles, possibly reflecting the unique fiber type composition of different muscles. Most significantly, our results indicate that MyHC-embryonic is required during embryonic and fetal myogenesis to regulate myogenic progenitor and myoblast differentiation in a non-cell autonomous manner via Mitogen Activated Protein Kinase (MAPKinase) and Fibroblast Growth Factor (FGF) signaling. Thus, our results signify that MyHC-embryonic is a key regulator of myogenic differentiation during embryonic, fetal and neonatal myogenesis.


2015 ◽  
Vol 26 (1) ◽  
pp. 29-42 ◽  
Author(s):  
Peng Yi ◽  
Li Li Chew ◽  
Ziwang Zhang ◽  
Hao Ren ◽  
Feiya Wang ◽  
...  

The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.


2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

Sign in / Sign up

Export Citation Format

Share Document