scholarly journals Integrin-mediated axoglial interactions initiate myelination in the central nervous system

2009 ◽  
Vol 185 (4) ◽  
pp. 699-712 ◽  
Author(s):  
Joana Câmara ◽  
Zhen Wang ◽  
Cristina Nunes-Fonseca ◽  
Hana C. Friedman ◽  
Matthew Grove ◽  
...  

All but the smallest-diameter axons in the central nervous system are myelinated, but the signals that initiate myelination are unknown. Our prior work has shown that integrin signaling forms part of the cell–cell interactions that ensure only those oligodendrocytes contacting axons survive. Here, therefore, we have asked whether integrins regulate the interactions that lead to myelination. Using homologous recombination to insert a single-copy transgene into the hypoxanthine phosphoribosyl transferase (hprt) locus, we find that mice expressing a dominant-negative β1 integrin in myelinating oligodendrocytes require a larger axon diameter to initiate timely myelination. Mice with a conditional deletion of focal adhesion kinase (a signaling molecule activated by integrins) exhibit a similar phenotype. Conversely, transgenic mice expressing dominant-negative β3 integrin in oligodendrocytes display no myelination abnormalities. We conclude that β1 integrin plays a key role in the axoglial interactions that sense axon size and initiate myelination, such that loss of integrin signaling leads to a delay in myelination of small-diameter axons.

2019 ◽  
Author(s):  
Brittany A. Mersman ◽  
Sonia N. Jolly ◽  
Zhenguo Lin ◽  
Fenglian Xu

AbstractConnections between neurons called synapses are the key components underlying all nervous system functions of animals and humans. However, important genetic information on the formation and plasticity of one type, the electrical (gap junction-mediated) synapse, is severely understudied, especially in invertebrates. In the present study, we set forth to identify and characterize the gap junction-encoding gene innexin in the central nervous system (CNS) of the mollusc pond snail Lymnaea stagnalis (L. stagnalis). With PCR, 3’ and 5’ RACE, and BLAST searches, we identified eight innexin genes in the L. stagnalis nervous system named Lst Inx1-8. Phylogenetic analysis revealed that the L. stagnalis innexin genes originated from a single copy in the common ancestor of molluscan species by multiple gene duplication events and have been maintained in L. stagnalis since they were generated. The paralogous innexin genes demonstrate distinct expression patterns among tissues. In addition, one paralog, Lst Inx1, exhibits heterogeneity in cells and ganglia, suggesting the occurrence of functional diversification after gene duplication. These results introduce possibilities to study an intriguing potential relationship between innexin paralog expression and cell-specific functional outputs such as heterogenic ability to form channels and exhibit synapse plasticity. The L. stagnalis CNS contains large neurons and a functionally defined network for behaviors; with the introduction of L. stagnalis in the gap junction field, we are providing novel opportunities to combine genetic research with direct investigation of functional outcomes at the cellular, synaptic, and behavioral levels.Summary StatementBy characterizing the gap junction gene innexin in Lymnaea stagnalis, we open opportunities for novel studies on the regulation, plasticity, and evolutionary function of electrical synapses throughout the animal kingdom.


2003 ◽  
Vol 84 (2) ◽  
pp. 209-221 ◽  
Author(s):  
Natalia Denisenko-Nehrbass ◽  
Laurence Goutebroze ◽  
Thierry Galvez ◽  
Carine Bonnon ◽  
Bruno Stankoff ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Vinicius Toledo Ribas ◽  
Björn Friedhelm Vahsen ◽  
Lars Tatenhorst ◽  
Veronica Estrada ◽  
Vivian Dambeck ◽  
...  

AbstractAxonal damage is an early step in traumatic and neurodegenerative disorders of the central nervous system (CNS). Damaged axons are not able to regenerate sufficiently in the adult mammalian CNS, leading to permanent neurological deficits. Recently, we showed that inhibition of the autophagic protein ULK1 promotes neuroprotection in different models of neurodegeneration. Moreover, we demonstrated previously that axonal protection improves regeneration of lesioned axons. However, whether axonal protection mediated by ULK1 inhibition could also improve axonal regeneration is unknown. Here, we used an adeno-associated viral (AAV) vector to express a dominant-negative form of ULK1 (AAV.ULK1.DN) and investigated its effects on axonal regeneration in the CNS. We show that AAV.ULK1.DN fosters axonal regeneration and enhances neurite outgrowth in vitro. In addition, AAV.ULK1.DN increases neuronal survival and enhances axonal regeneration after optic nerve lesion, and promotes long-term axonal protection after spinal cord injury (SCI) in vivo. Interestingly, AAV.ULK1.DN also increases serotonergic and dopaminergic axon sprouting after SCI. Mechanistically, AAV.ULK1.DN leads to increased ERK1 activation and reduced expression of RhoA and ROCK2. Our findings outline ULK1 as a key regulator of axonal degeneration and regeneration, and define ULK1 as a promising target to promote neuroprotection and regeneration in the CNS.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lisa Zondler ◽  
Sebastian Herich ◽  
Petra Kotte ◽  
Katharina Körner ◽  
Tilman Schneider-Hohendorf ◽  
...  

Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to β1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger β1-integrin activation via PLCγ1 upon engagement.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document